Professor Ray Clough coined the finite element terminology in the publication “The Finite
Element Method in Plane Stress Analysis”, Proceedings, Second Conference on Electronic Computation, ASCE,
in Pittsburgh, PA, Sept. 1960. At that time, the vacuum-tube IBM 701 could only solve 40 equations; therefore,
the examples presented were small and the engineer had to develop the stiffness matrix by hand calculations.
During the next year, graduate student Ed Wilson, working under the direction of Ray Clough, developed (on
the IBM 704) the first completely automated finite element program that could analyze any plane stress

structure without program modification or the requirement to perform additional hand calculations.

The first application of the program clearly demonstrated the significant power of the Finite Element Method,
FEM, in solving a very complex real problem in the repair of Norfork Dam. The resulting publication in the
Bulletin RILEM®, a group of international laboratories and experts in materials and analysis of structures. The
recognition by this large and respected international group of structural engineers was one of the major reasons
the FEM was accepted within a few years. Prior to 1963, experimental physical models, photo-elasticity and
finite differences analyses methods were used to solve problems of this type. Within the next several years,
most of these methods were replaced by the FEM. (continued on last page)
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RESUME

Des études préalables ont montré que la méthode de I’élé-
ment fini est un instrument trés adapté a I'analyse des états
plans de contrainte. Dans la présente communication on décrit
I'application de cette méthode 4 I'analyse de contraintes dans
un barrage poids. On a généralisé le programme de la calcu-
latrice digitale de fagon 4 pouvoir tenir compte automatique-
ment des contraintes thermiques, de celles dues aux poids
propre ainsi que des surcharges arbitraires et aussi de fagon
i pouvoir faire 'analyse par un procédé d’itération. On pré-
sente les résuitats obtenus pour différentes hypothéses de
chargement afin de montrer I'efficacité de la méthode.

INTRODUCTION

The matrix algebra formulation of the equations
of structural analysis completely generalizes the
analytical procedures, and greatly broadens the
scope of their applicability. Traditionally, use of
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SUMMARY

In previous studies, the finite element method has been shown to
provide a convenient teol for the analysis of plane stress systems.
The present paper is concerned with the application of this method
to stress analysis of a gravity dam. The digital computer program
has been extended to account autematically for thermal and dead
weight stresses as well as arbitrary live loads, and makes use of an
iteration procedure in performing the analysis. Results are des-
cribed for a number of different loading conditions to demonstrate
the effectiveness of the procedure.

the standard methods of structural analysis has
been restricted to the treatment of structures built
up from one-dimensional members, ie. members
whose elastic and geometric properties can be
expressed as functions of position along the elastic
axis. Through the use of matrix procedures, however,
the same basic principles can be applied in the ana-
lysis of entirely different types of structures-com-
prising assemblages of two-dimensional elements.
Included among such structures might be plates,
shells, and systems subjected to plane stress or plane
strain.

The purpose of this paper is to describe the appli-
cation of matrix structural analysis methods to the
solution of a plane stress elasticity problem. The

(*) RILEM - Reunion Internationale des Laboratoires et Experts des Materiaux was formed in 1948.
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general procedure, which iz known as the finite
element method, has been described in a previous
publication[1]. However, although the versatility
and range of accuracy of the method were indicated
in that report, its usefulness in solving large-scale,
practical problems had not yet been demonstrated.
For this reason, the authors were pleased to be given
the opportunity of undertaking the investigation
described in this report: the application of the finite
element method to the analysis of stresses and dis-
placements in a large concrete gravity dam. The
investigation. was sponsored by the Little Rock
District Office of the U. 8. Army Corps of Engineers,
and a complete report: on the studies has been sub-
mitted to that office[2]. Due to space limitations, only
a brief summary of the work and a representative
selection from the final results will be presented
here.

STATEMENT OF THE PROBLEM

The system considered in this investigation was a
one foot thick slice of a concrete gravity dam, 196 feet
high from the base to the spillway crest, with a pro-
file as shown in figure 1. Of particular interest in
the study was the effect on the stress distribution of
a crack extending from the foundation rock verti-
cally through most of the height of the section, as
shown in the sketch. The leadings to which the
structure was sujected included the weight of the
concrete, the water pressures, and thermal loads
caused by temperature changes (Fig. 2).

Properties assumed for the concrete and for the
foundation rock in these analyses are shown in
Table 1. It will be noted that different moduli of
elasticity were assumed for the two materials; the
relatively low modulus taken for the concrete was

TABLE I. Assumed properties of materials

Concrete:

Modulus of Elasticity E, =20 x 10%psi
Poisson's Ratio i — LT,
Unit Weight ¥ =ilB0 pot

Thermal Coefficient «
Foundation Rock:

Modulus of Elasticity E, = 5.0 x 10°% psi
Poissons' Ratio v = L 1F
Thermal Coefficient « = 7.0 x 10-% per F
Vertical Modulus Ey = 1.0x 108 psi
(Orthotropic cases)
Water:
Unit Weight vie = 062.5 pcf
Temperature Change:
AT = — 359 F in body of dam decreasing tc 0° F

about 30 feet below the surface of the foundation
rock (Fig. 2).
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MAX. WATER EL. 584.0

SPILLWAY CREST EL. 5520

EL.364.0

200!

16, 1. — Basic geometry of the dam section.

intended to account for the effects of creep and plastic
flow under sustained load. In one phase of the study,
an orthotropic elasticity conditicn was assumed in
the foundation rock (with the vertical modulus only
one-fifth of the horizontal) because it is quite possible
that horizontal stratification of the foundation might
produce such a condition, and it was of interest to
determine the resulting effect on the stress distribu-
tion in the dam.

ELEV 584

I i A ..i‘_\/

b_FINE MESH

LN

c_TEMPERATURE

Fic. 2. — Finite element idealizations of the dam section.
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It was assumed in these studies that the vertical
crack resulted from the cooling of the concrete, and
the evaluation of the width of the crack opening
resulting from each of the various load combinations
was one of the principal objects of the studies. In
addition, the stress distribution within the section
(particularly in the stress concentration zones at the
ends of the crack and at the toe and heel of the dam)
as well as its overall displacements were of interest.
An uncracked section also was studied so that a
comparison of the results for the two systems might
demonstrate directly the influence of the crack.

THE FINITE ELEMENT METHOD

Because the finite element method has been
described previously, only a brief description of
the general features of the method will be given here.
In addition, certain features of the present study
which have not been presented before will be dis-
cussed in greater detail. In general, the method
" consists of idealizing the actual continuous system
as an assemblage of triangular plate elements, inter-
connected only at the corners, and also loaded only
at these points. Within each element, the normal
and shear stresses are assumed uniform, thus con-
tinuity between the elements is maintained even
though they are connected only at the nodal points.

The analysis involves first calculating the stiffnesses
of the individual triangular elements ; then by adding
together the pertinent element stiffnesses, the stiffness
of the assembled system is determined. This assem-
bled structure stiffness is represented by the matrix
[K] in the equation:

(R} =[K] {r} )
where also
R} = vector of all nodal point force components
{r } = vector of corresponding nodal point dis-

placements.

This equation can be solved formally for the dis-
placements resulting from specified loads by inver-
ting the stiffness matrix. However, in the present
study, this matrix was too large to be inverted con-
veniently, and the displacements were determined
from Eq. (1) by an iteration process.

After the nodal point displacements have been
obtained, the stress components in each of the trian-
gular elements (which are linearly related to the
displacements) can be obtained by the matrix multi-

plication:

{o} =M {r} (2)
in which
{c} = vector of all element stresses o, 6, Ty

[ M] = stress transformafion matrix.

In this study, the principal stresses in the elements
and their directions were also determined, in addi-
" tion to the x, y stresses.

Element Idealizations

The finite element idealizations used in this study
are shown in figure 2. The coarse mesh idealization
in figure 2a was used in preliminary analyses in
order to determine the displacements at the base
of the foundation system used in the fine mesh ana-
lysis (shown by the dashed line). Thus it was possible
to retain the effect of a deep foundation in the fine
mesh idealization shown in figure 2b without devo-
ting a large number of elements to the foundation
zone. It was necessary, of course, to make a separate
coarse mesh analysis for each of the loading condi-
tions which were applied tc the fine mesh system.
In the coarse mesh system, there are a total of 103
elements and 69 nodal points, while in the fine mesh
system the numbers are 194 and 130 respectively.

Element Stiffness

The derivation of the stiffness matrix of an arbi-
trary isotropic plane stress element is presented in
[1]. and will not be repeated here. It is of interest
to note, however, that this same stiffness matrix
can be applied In a plane strain analysis if
modified material properties are used, as follows:

Bl E
1—v2
€)
o g e
1 v
where E = modulus of elasticity (actual)
v = Poissons’ ratio (actual)

and the starred values represent the medified pro-
perties to be used in a plane strain analysis. The
plane stress condition was considered to be more
applicable in the present study ; but with the assumed
value of Poisson's ratio, the difference between the
two conditions is negligible : E¥/E = 1.03, v¥/v = 1.20.

In order to represent the orthotropic foundation
material, it was necessary to develop an orthotropic
element stiffness matrix. For this purpose, the stress-
strain relationship for an orthotropic material was
needed. In this derivation, it was assumed that the
orthotropic material actually consisted of a hori-
zontally layered system of alternately hard and soft
lsotropic materials. Designating the properties of
these materials E;, v; and E,, v, respectively, it
was further assumed that:

T = (4)

On the basis of these assumptions, the orthotropic
stress-strain relationship was found to be

€, 1 1 — v 0
gy | =g [ % i 0 (5)
Yoy “ 0 0 2 (P‘ %‘ Vm)
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in which
E,
Ee=E (0 —r*);ri*=r|l —=

o =1y (1 —1%)
B 7E 5

w=—;E8 = E,
! E, "~ ¥ =3
v + E,

and r is the proportion of the total volume cccupied
by the soft layers. Using this orthotropic stress-strain
law, the derivation of the orthotropic element stiffness
followed exactly the procedure described in
[1] for the isotropic triangular element stifiness.

Loadings

The load vector {R} in Eqg. (1) is merely a listing
of all the load components applied at the nodal points
in any given analysis. For each nodal poeint, the dead
load force was computed by taking one-third of
the total weight of all elements attached to the
nodal pomnt. Live load (water) forces were applied
only at the nodal points in contact with the water,
of course, and were taken as the concentrated static
equivalent of the distributed water pressures acting
on these elements.

The thermal loads were calculated by first deter-
mining the stresses which would exist if all strains
due to temperature changes were censtrained. In a
plane stress system, these stresses are given by

Ea
o= — 7 — AT ©)
in which « = thermal coelficient of expansion
AT = change of temperature.

The nodal forces required to maintain these stresses
In each element were then found by simple statics,
Finally, since thes®! nodal constraints did not really
exist, their effect was eliminated by applying equal
and opposite nodal forces.

These reversed nodal forces are the thermal
loads for which the section was analyzed. Displa-
cements resulting from these effective loads are
the true thermal displacements in the system. The
total thermal stresses were determined by combining
the constrained stress of Eqg. (6) with the stresses
resulting from these thermal loads.

THE DIGITAL COMPUTER PROGRAM

Practical applications of the finite element method
described above require such a tremendous amount
of computational effort that they may be performed
only by means of automatic digital computers. A
special program designed to perform such analyses
for arbitrary finite element idealizations has been
written for the IBM 704 operated by the University
of California Computer Center, and was used in all
of the work described in this report,
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The computer program performs three major
tasks in the complete analysis of a plane stress
system. First, the element stiffness and load matrices
are formed from a basic numerical description of the
structure. Second, Eq. (1) is solved for the displa-
cements of the nodal points by an iteration procedure.
Third, the internal element stresses are determined
from these displacements. Only the main operations
of the computer program will be described here;
details of the coding will be omitted. The operation
of the program is flexible in that both input and
output can be « on-line » or may be effected « off-
Iine » through the use of magnetic tapes and peri-
pheral eguipment.

Numerical Procedure

Before presenting the sequence of operations that
is performed by the computer program, itis necessary
to discuss in some detail the actual numerical pro-
cedure that was employed. This method is a modi-
fication of the well-known Gauss-Seidel iteration
procedure which, when applied to Eq. (1), involves
the repeated calculation of new displacements from
the equation
rrE: - (Km) [R il Ik

n "

. ) niti
t=1,n—1 i—=n+1

(7)

where n = number of the displacement component
s = cycle of iteration

j f;-.s 1) b5 Ve },!S)
N

The only modification of the procedure introduced
in this analysis is the application of Eq. (7) simul-
taneously to both components of the displacement
at each nodal point. Therefore r, and R, become
vectors with x and y components, and the stiffness
coefficients are in the form

B ICM- k{t‘?}'
kam - [k kyy] L (8)

i

in which [ and m are ncdal point numbers.

Over-Relaxation Factor

The rate of convergence of the Gauss-Seidel
procedure can be greatly increased by the use of
an over-relaxation factor [3]. However, in order
to apply this factor it is first necessary to calculate
the change in the displacement of nodal point n
between cycles of iteration:

K= 0 o8, (9)

The substitution of Eq. (7) into Eq. (9) yields for the
change in displacement

(s B " 51 - 5
L\rnb] = (k™! [Rn g ~ ; kyi 1y Fieg . = kuir'{\)]
i=1,n—1 i=nN
(10)

The new displacement of nodal point n is then deter-
mined from the following equation:

N — ) BAS (11
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It was assumed in these studies that the vertical
crack resulted from the cooling of the concrete, and
the evaluation of the width of the crack opening
resulting from each of the various load combinations
was one of the principal objects of the studies. In
addition, the stress distribution within the section
(particularly in the stress concentration zones at the
ends of the crack and at the toe and heel of the dam)
as well as its overall displacements were of interest.
An uncracked section also was studied so that a
comparison of the results for the two systems might
demonstrate directly the influence of the crack.

THE FINITE ELEMENT METHOD

Because the finite element method has been
described previously, only a brief description of
the general features of the method will be given here.
In addition, certain features of the present study
which have not been presented before will be dis-
cussed in greater detail. In general, the method
consists of idealizing the actual continuous system
as an assemblage of triangular plate elements, inter-
connected only at the corners, and also loaded only
at these points. Within each element, the normal
and shear stresses are assumed uniform, thus con-
tinuity between the elements is maintained even
though they are connected only at the nodal points.

The analysis involves first calculating the stiffnesses
of the individual triangular elements ; then by adding
together the pertinent element stifinesses, the stiffness
of the assembled system is determined. This assem-
bled structure stiffness is represented by the matrix
[K] in the equation:

{R} = [K] {r} )
where also
R}l = vector of all nodal point force components
{r} — vector of corresponding nodal point dis-

placements.

This equation can be solved formally for the dis-
placements resulting from specified loads by inver-
ting the stiffness matrix. However, in the present
study, this matrix was tco large to be inverted con-
veniently, and the displacements were determined
from Eq. (1) by an iteration process.

After the nodal point displacements have been
obtained, the stress components in each of the trian-
gular elements (which are linearly related to the
displacements) can be obtained by the matrix multi-

plication:

{o} = [M] {1} (2)
in which
{6} = vector of all element stresses o, o, T
[ M] = stress transformation matrix.

In this study, the principal stresses in the elements
and their directions were also determined, in addi-
" tion to the x, y siresses.

Element Idealizaticns

The finite element idealizations used in this study
are shown in figure 2. The coarse mesh idealization
in figure 2a was used in preliminary analyses in
order to determine the displacements at the base
of the foundation system used in the fine mesh ana-
lysis (shown by the dashed line). Thus it was possible
to retain the effect of a deep foundation in the fine
mesh idealization shown in figure 2b without devo-
ting a large number of elements to the foundation
zone. It was necessary, of course, to make a separate
coarse mesh analysis for each of the loading condi-
tions which were applied to the fine mesh system.
In the coarse mesh system, there are a total of 103
elements and 69 nodal points, while in the fine mesh
system the numbers are 194 and. 130 respectively.

Element Stiffness

The derivation of the stiffness matrix of an arbi-
trary isotropic plane stress element is presented in
[1], and will not be repeated here. It is of interest
to note, however, that this same stifiness matrix
can be applied in a plane strain analysis if
modified material properties are used, as follows:

E¥ — b
T l—yE
(3
yF = 2
11—
where E = modulus of elasticity (actual)
v = Poissons’ ratio (actual)

and the starred values represent the modified pro-
perties to be used in a plane strain analysis. The
plane stress condition was considered to be more
applicable in the present study ; but with the assumed
value of Poisson's ratio, the difference between the
two conditions is negligible : E¥/E = 1.03, v¥/v = 1.20.

In order to represent the orthotropic foundation
material, it was necessary to develop an orthotropic
element stiffness matrix. For this purpose, the stress-
strain relationship for an orthotropic material was
needed. In this derivation, it was assumed that the
orthotropic material actually consisted of a hori-
zontally layered system of alternately hard and soft
isotropic materials. Designating the properties of
these materials E;, v; and E,, v, respectively, it
was further assumed that:

e 4

On the basis of these assumptions, the orthotropic
stress-strain relationship was found to be

€ 1 1 — 0
o | =2 [—% ¢ 0 ®)
Tay “LO 0 &l g
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in which
i i Ez
Ep=E, [l —a*); s¥=1w I%E")
1
vy =y (1—r%
E
EL e
p== Ey = % 52
H, r +El

and r is the proportion of the total volume occupied
by the soft layers. Using this orthotropic stress-strain
law, the derivation of the orthotropic element stiffness
followed exactly the procedure described in
[1] for the isotropic triangular element stiffness.

Loadings

The load vector {R} in Eqg. (1) is merely a listing
of all the load components applied at the nodal points
in any given analysis. For each nodal peint, the dead
load force was computed by taking one-third of
the total weight of all elements attached to the
nodal point. Live lcad (water) forces were applied
only at the nodal points in contact with the water,
of course, and were taken as the concentrated static
equivalent of the distributed water pressures acting
on these elements.

The thermal loads were calculated by first deter-
mining the stresses which would exist if all strains
due to temperature changes were constrained. In a
plane stress system, these stresses are given by

Eu

6= iy — AT (6)
in which « = thermal coefficient of expansion
AT = change of temperature,

The nodal forces reguired to maintain these stresses
in each element were then found by simple statics,
Finally, since thes®! nodal constraints did not really
exist, their effect was eliminated by applying equal
and opposite nodal forces.

These reversed nodal forces are the thermal
loads for which the section was analyzed. Displa-
cements resulting from these effective loads are
the true thermal displacements in the system. The
total thermal stresses were determined by combining
the constrained stress of Eq. (8) with the stresses
resulting from these thermal loads.

THE DIGITAL COMPUTER PROGRAM

Practical applications of the finite element method
described above require such a tremendous amount
of computational effort that they may be performed
only by means of automatic digital computers. A
special program designed to perform such analyses
for arbitrary finite element idealizations has been
written for the IBM 704 operated by the University
of California Computer Center, and was used in all
of the work described in this report.

48

The computer program performs three major
tasks in the complete analysis of a plane stress
system. First, the element stiffness and load matrices
are formed from a basic numerical description of the
structure. Second, Eq. (1) is solved for the displa-
cements of the nodal points by an iteration procedure.
Third, the internal element stresses are determined
from these displacements. Only the main operations
of the computer program will be described here;
details of the coding will be omitted. The operation
of the program is flexible in that both input and
output can be « on-line » or may be effected « off-
line » through the use of magnetic tapes and peri-
pheral equipment.

Numerical Procedure

Before presenting the sequence of operations that
is performed by the computer program, it is necessary
to discuss in some detail the actual numerical pro-
cedure that was employed. This method is a modi-
ficaion of the well-known Gauss-Seidel iteration
procedure which, when applied to Eq. (1), involves
the repeated calculation of new displacements from
the equation

(511} == r 81 ~ (s
r‘r: I - (k’:m) L [Ru - by kw." 'rciN Ph— z k’nir‘l;‘”]
=l it=n+1,N
(1)

where n = number of the displacement component
s = cycle of iteration

The only modification of the procedure introduced
in this analysis is the application of Eq. (I) simul-
taneously to both components of the displacement
at each nodal point. Therefore r, and R, become
vectors with x and y components, and the stiffness
coefficients are in the form

ko= = 2] ®

YL yY.

in which I and m are nodal point numbers.

Over-Relaxation Factor

The rate of convergence of the Gauss-Seidel
procedure can be greatly increased by the use of
an over-relaxation factor [3]. However, in order
to apply this factor it is first necessary to calculate
the change in the displacement of nodal point n
between cycles of iteration:

Ar}zﬁ] — 1/;’(:‘{ n f’.(:'). (9)
The substitution of Eq. (7) into Eq. (9) vields for the
change in displacement
Arf(ksj == (k-n'ﬂ)_l [Rn - bY kn)'lilgs P 2! k-m' F'ES)]
i=1,m—1 i =N
(10)

The new displacement of nodal point n is then deter-
mined from the following equation:

(s+ (& / 1)
F e rn?rﬁ ""{;’—\rf(eb (ll)
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where B is the over-relaxation factor. For the struc-
ture considered in this report it was found that a
value of § equal to 1.86 gave the most rapid conver-
gence.

Physical Interpretation of Method

Important physical significance can be attached to
the terms of Eq. (10). The term (k,,)! is the flexibility
of nodal point n. This represents the nodal point
displacements resulting from unit nodal point forces,
and can be written in the form of a sub-matrix:

i B
() = [ . (12)
fym f’ﬂl‘ n
The summation terms represent the elastic forces
acting at nodal point n due to the deformations of
the plate elements:
Ot = B ka4 T ka0 (18
i=1,n—1 i=nN
*The difference between these elastic forces and the
applied loads is the total unbalanced force, which
in sub-matrix form may be written:

ﬂXi(H“ Rm} iow}‘”“
eY\n Ryl"nﬁ (Q'y\
Eguation (11) which gives the new displacement of

nodal point n, may now be written in the following
sub-matrix form:

(14

(1,)l+D T [fm fm] (Xjetn
{r,) = 3 It =118
B Ir,! t fo Fula 1YV, (18)

It is important to note that any desired nodal point
displacement may be assumed for the first cycle
of iteration. A good choice of these displacements
will greatly speed the convergence of the solution.
In fact, if all displacements were assumed correctly,
the unbalanced forces given by Eqg. (14) would be
zero, and no iteration would be necessary. However,
in a practical case, there always will be unbalanced
forces in the system at first, and the iteration process
continually reduces them toward zero.

Input Data

For the purpose of defining the structure, all
nodal points and elements are numbered, consecu-
tively. The numerical description is read into the
machine in the form of punched cards, by the follo-
wing four arrays:

A. Parameter Array (6 numbers):

. Number of elements.

. Number of nodal points.

. Number of boundary points.

. Over-relaxation factor 2.

. Convergence limit.

. Coefficient of thermal expansion =.

O U3 v Lo DO —

B. Element Array (9 numbers per element):

Element number.

Number of nodal point 1.

Number of ncdal point j.

Number of nodal point k.

Modulus of elasticity E

Poisson’s ratio v

Unit weight of element v

Temperature change within element AT

Orthotropic factor p = f
v

C. Nodal Point Array (7 numbers per nodal point):

Nodal point number,
x-ordinate.
y-ordinate,

. x-load.

y-load.

Initial x-displacement.
Initial y-displacement.

B ROl Ry

jplioz o R s Coll -

D. Boundary Condition (2 numbers per boundary
point):
1. Nodal point number.
2. This number indicates the type of constraint:
« O» for a point fixed both vertically and
horizontally, the only boundary constraint
condition considered in this investigation.

Output Information

At specified intervals in the iteration procedure,
nodal displacements and element stresses are prin-
ted. Figure 3 illustrates the form of the computer
output in a typical case. In addition, the sum of the
absolute magnitude of the unbalanced forces at all
nodal points (Eq. 14), which is computed for each
cycle, is printed out as a check on the convergence
of the procedure. In zll analyses made during the
course of this investigation, this sum was reduced
to less than 1/1000 of its value after the first cycle
of iteration.

Timing

The computational time required by the program
is approximately equal to 0.07 n.m seconds, where
n equals the number of nodal points and m equals
the number of cycles of iteration. The number of
cycles required depends on the accuracy of the
initially assumed displacements and on the desired
degree of convergence. For the structure considered
in this report, the computer time per solution was
approximately 7 minutes for the coarse mesh and
17 minutes for the fine mesh. The number of cycles
of iteration for the various cases ranged from about
70 to 10C0.

RESULTS
Although the printed output of the computer, as

shown in figure 3, contained the complete results of
the investigation, they were alsc presented graphi-
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(PsI) . tPsi) { PSI) ( PSI) { PSI) | DEGREES )
ELEMENT X-STRESS Y-STRESS XY-STRESS MAX-STRESS MIN-STRESS DIRECTION
1 -21.637024 -40.614304 33.432649 3.6 -65.9 =371
T2 15.095711 3.577621 21.15B474 31.3 -12.6 -37.4
3 ~42.514305 -38.270859 2.591661 -37.0 -43.7 -64.7
4 -31.742538 ~16.98930% 14.911327 -7.7 -41.0 -58.2
5 =5.087471 9.535896 -4.226090 10.7 -6.2 75.0
b- -60.592682 -2l.88361% 5.673300 =2t -6l.4 -8l.8
7 3.596840 -6.501434 8.0601%41 8.1 -11.0 -29.0
8 -41.907402 8.325272 22.115488 16.7 =50.3 -69.3
9 ~23.H894760 -14,201363 2.760811 =13.7 -30.4 ~B80.3
] -19.019836 -113.042328 41.108610 -3.6 = L2845 -20.6
11 =9.6T0067 =34.545715 1.172920 -3.3" -9.9 -79.5
12 -19.362946 24.689590 0.280712 24.7 =19.4 -B9.6
13 ~42.158066 2.489432 ~3.621626 2.8 -42.4 85.4
14 -13.876846 9.762047 -1.376879 9.8 -14.0 86.7
15 -595.332329 12.438753 11.194128 14.6 =571 -80.9
16 -11.221085 21.112564 13.3864552 25.9 -16.0 -710.2
17 -61.941177 -16.112938 31.179846 -0.3 ~T1.7 -63.2
18 14.500993 -10.251991 33.216614 37.8 -33.2 -34.6
19 -77.299423 ~1H.673866 45.481194 6.1 -102.1 -6l.4
20 -68.392212 -25.644630 21.986590 -16.4 } =77.7 -67.1
21 ~34.477783 -10.517090 11.790344% -5.7 -39.3 -67.7
22 ~7.346345 4.977432 -4.832099 10.3 -8.7 T4.1
23 -34.220215 23.321732 -8.167995 24.9 =35.4 82.1
24 —1l.582161 32.631912 -2.718958 32.8 SLLLT 8&6.5
25 —46.657974 19.291512 3.835845 19.5 -46.9 -86.7
26 -13.946526 43.675842 18.032915 48.9 -19.1 -74.0
27 -83.45H755 =12.719467 45.440448 9.5 -105.7 -63.9
28 -4.890427 13.2081176 37.164865 42.4 -34.1 -51l.8
29 1.348351 ~10.524033 30.664423 26.6 -35.8 -39.5
30 -102.706940 -89.429132 46.319461 -49.5 -143.0 -49.0
31 —36. 349174 ~70.508469 66.600939 15.3 =122.2 -37.8
32 -1.370247 ~44.9506326 25.714500 10.6 -56.8 -24.9
33 ~26.064774 -64,952545 59.050345 16.7 -107.7 -35.9
34 -20.962494 -16.453156 14.811054 -3.7 =33.7 -49.3
35 -32.728851 -5.217323 2.676623 =5.0 -33.0 -B84.5
36 -45.84431% 15.385841 -0.936499 15.4 -45,9 89.1
37 ~22.696800 12.184837 -2.723261 12.4 -22.9 85.6
38 -9.303067 33.630989 -7.344516 34,9 -10.5 80.6
39 -16.388954 38.171394 -4.737985 3.6 -lb.8 85.1
40 29.606812 46.913466 2.932751 47.0 29.1 -80.4
41 -6.309213% 29.010864 -7.2925484 30.5 -T7.8 T4.8
42 41.728219 65.571236 81.198050 135.7 -28.% -49.2
43 -18.289627 ~15.7682555 19.939212 2.9 -37.0 -46.48
44 22.005043 -23.887611 62.266115 65.4 -67.3 -34.9
45 ~9.252440 -55.976212 39.016029 12.9 -18.1 -29.5
4“6 -23.6453789 -69.528412 "5143T1544 9.4 -102.8 -32.9
47 -57.654015 -19.821014 12.165121 -16.2 -61.2 =FaLE
48 ~16.01073% ~1.6467845 13.872331 6.9 -24.4 -58.8
49 -93.4346456 6,212318 3.402412 b.b =43.6 -86.7
50 “11.542534 29.182938 16.814773 315.2 -17.86 -70.2
51 -33.487152 19.204918 16.218376 23.8 -1 -714.2
{ INCHES | { INCHES }
NODAL POINT X=DISPLACEMENT Y-DISPLACEMENT
1 0.0451173 -0.029458
2 0.0541748 -0.013816
3 0.130151 -0.034537
4 0.166736 -0.067413
5 0.190258 -0.100647
6 Y 0.209396 -0.136003
1 " 0.225935%% -0.171480
8 Tl 0.238976 -0.207627
9 0.250559 -0.2643729
10 0261115 =0.279447
11 0.272950 -0.320961
12 0.289812 -0.371849
13 0.297384 -0.398693
14 0.238857 -U.416963
15 U.237644 -0.395673
16 0.191532 -0.400589
17 0.23235%6 ~U.3371U9
18 0.190137 -0.3518U4
19 0.149180 0. 366911
20 0. l4l777 -0.380089
21 0.129665 -0.372276
22 0.23H763 -0.288985%
23 0.196613 ~U.306839
24 U.15%4202 -0.323265
25 0.111614 -0.336806
26 0.087621 —U. 344180
27 0.201616 -0.264921
28 0.159523 ~U.282565
29 0.117430 -0.2973179
30 0.096284 04302604
31 0.0490143 -0.324456
32 0.068349 ~0.327413
33 0.070444 -0.305%661
34 0.U663495 -0.305916
EL V. 2U5631 -0.222702
16 0.163547 -0.241099
7 0.1232130 -0.257917
3y 0.084663 -“U.265945
3y 0.ull%67 ~U.2684171
40 0,048155 -0.267604
41 0.0161%5 -0.26%4061
42 0.207691 ~U.180322
43 U lbabUl -U.199870
44 V. 122949 -0.217015

45 0.083207 -0.233610 F16. 3. — Digital computer output.
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cally in order that they might be more easily inter-
preted. Stress results were presented in two types
of charts. Stress Vectors, shown in figure 4 for the
dead plus live load acting on the uncracked section,
are merely a direct graphical representation of the
magnitudes and directions of the principal stresses,
plotted from the center of each element. Such figures
give a good qualitative picture of the state of stress
in the section; but for quantitative studies, the Stress
Contours, shown in figures 5, 6, and 7 are preferable.
These contours, or iso-static lines, are lines of cons-
tant stress on the section. They clearly indicate the
areas of high stress concentration.

Although it is not the purpose of this paper to
discuss the specific results obtained in the investi-
gation, a few comments with regard to these figures
may be of interest. Figure 5 shows the stress distri-
bution in the section with a crack extending through

F16. 4. — Stress vectors — Uncracked section, dead plus live load.

7/9 of the height, when subjected to dead plus live
loads. The compressive stress concentrations at the
base and top of the crack, and the tensile stress
zones at the heel and near the top of the crack are
of particular interest here. A comparison of the two
cases shown in figure 6 demonstrates the importance
of the temperature sfresses on the uncracked sec-
tion, in comparison with those due to dead plus live
loading. Comparison of figure 7 with figure Sa
indicates the relatively small influence exerted by
the reduced vertical modulus of the orthotropic

foundation. .

Nodal displacement results were also presented
in two types of charts. Figure 8 shows the boundary
nodal point displacement vectors. Lines connecting
the ends of these vectors show the outline of the
deformed structure, to an exaggerated scale. Of
more interest in this investigation, however, was the
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relative displacement of the two sides of the crack,
shown in figure 9. Here the successive effects of
temperature, dead load, and dead plus live load on
the crack opening are clearly indicated. It is of
interest to note that the live loading was not suffi-

cient to close the crack completely.

CONCLUSIONS

This investigation has clearly demonstrated the
applicability and practicality of the finite element
method in solving large-scale and complex plane
stress (or plane strain) elasticity problems. One
of the most important attributes of the method is its
versatility, which results from its discrete (rather
than continuous) representation of the system.
Because each element is treated individually, it may
be assigned properties completely without regard
for the properties of its neighbours. Thus, the diffe-
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Fic. 7. — Normal stress distribution with orthotropic
foundation — 7/9 crack height— dead plus live load.
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T1c. 9. — Crack openings — 7/9 crack height.

rence between the moduli of the foundation rock
and the concrete of the dam, and the fact that one
material might be orthotropic while the other was
isotropic, caused no difficulty whatsoever. Similarly,
because the temperature changes were assigned
element by element, any desired thermal gradient

could be represented.
Also to be noted is the ease with which the trian-

gular element system can be arranged to fit any
specified boundary condition. The internal crack
becomes merely another external boundary, by this
procedure, and leads to no special problems. Another
advantage of the triangular element representation
is the fact that different sizes of elements can be
employed in different parts of the system during a
single analysis, Thus, it is possible to employ small
elements in regions of siress concentration and high
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stress gradients, while Iarger elements may be used
in areas where the stresses are relatively constant.

The principal disadvantage of the finite element
method also results directly from the discrete nature
of the idealization. Because the stresses are assumed
constant within each element, the discontinuous
stress distribution which is computed must be smooth-
ed out graphically to give a better indication of the
actual continuous distribution. In the construction
of the stress contours in this study, it was assumed
that the calculated element stress applied to the
center of the element, and the contour lines were
located accordingly. Increasing the number of ele-
ments tends to reduce the stress discontinuities,
of course, but because the computation time increases
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Historical remarks by Ed Wilson - 2013

At the time Ray wrote this 12 page paper he had approved the final draft of my Doctor of Engineering
Dissertation which was later published as a 72 page report “Finite Element Analysis of Two Dimensional
Structures”, UCB/SESM Report No. 63/2, University of California Berkeley, June 1963. The analysis of
Norfork Dam was included as an example, in addition to other examples. The dissertation also included
improvements to the Gauss-Seidel iteration method and extension of the FEM to the analysis of structures with
nonlinear materials. However, the major reason copies of my dissertation were requested by thousands of
structural engineers was to obtain the Appendix, which contained the six page users’ manual and the six page
FORTRAN listing of the linearly elastic version of the FEM program. A few years later, an engineer in
Washington modified the program and sold it for $30,000.

The policy of freely distributing the structural engineering software, which was developed by graduate students
and me, continued for the next 22 years. During this period of time, my research was motivated and funded by
my consulting work and solving real engineering problems. In addition, Professor Jack Bouwkamp and I had a
small ongoing NSF project for the dynamic field testing of structures and comparing results with computer
program predictions. In 1984 our proposal to continue the project was rejected by NSF and it was necessary to
personally fund one graduate student. It was at that point in time; I decided structural analysis programs,
developed (in FORTRAN) on my personal computer at home, would no longer be freely given away. It was a
great opportunity to develop a new generation of structural engineering software to operate on inexpensive
personal computers. Looking back, the loss of the NSF project funding was one of the best days of my life. Also,
I will always be thankful to Ray Clough for placing my name on this historic paper.
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Sequence of Operations

Input Data - For the purpose of numerically defining a structure,

all nodal points and elements are numbered as illustrated in

Fig, 16. The following sequence of punched cards numerically

defines the structure.

A. Title Card (72H)
Columns 2 %o 72 of this card contalin informatlion to be
printed with result.

B. Control Card (614, 2El2.5, 1I1)

Cols. 1-4
5-8
9=12

13-16
17-20

21-24
25=36
37-18

49

Number of elements

Number of nodal points

Number of restrained boundary points

Cycle interval for the print of the force unbalance
Cycle interval for the print of displacements

and stresses

Maximum number of cycles problem may run
Convergence limit for unbalanced forces
Over-relaxation factor

Non-zero punch to suppress printing of input data

C. Element array - 1 card per element (4I4, 4E12.4, F8.4)

Cols. 1-4
5-8

9-12

13-16

17-28

29-40

41-52

55=-64

65=72

Element number

Nodal point number 1

Nodal point number

Nodal polint number k

Modulus of elasticity

Density of element

Poisson's Ratio

Coefficient of thermal expansion
Temperature change within element

D. Nodal point array - 1 card per nodal point (1I4, 4F8.1,

2F12.8)
Cols. 1-4
5=-12
13=20
21-28
29-36
37-48

49-60

Nodal point number

X-ordinate

Y-ordinate

X-load

Y~-load

X=-displacement on free nodal points, these are
initial guesses, on

Y-displacement restrained nodal points, these
zre specified displacements.

E. Boundary array - 1 card per point (2I4,IF6)

Cols. 1-4
5-8

9-16

Nodal point number

0 if Nodal point is fixed in both directions
1 if Wodal polnt is fixed in X-direction.

2 if Nodal point 1s free to move along a line
of slope 3.

Slope S (type 2 boundary point only)
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It should be noted that for a fixed boundary point, the initial
displacement 1s the final displacement of the point, since it
ls not altered by the lteration procedure.

Formation of Element Stiffness Matrices - The stiffness matrix

for each element 1s determined from Eq. 1l. The basic element
dimensions are calculated from the coordinates of the connect-

ing nodal points:

aj = Xj - X
bj — Yj - Yi
8, = Xk - Xi
bk = Yk - Yi

where 1, J] and k are the nodal point numbers of the three
connecting points and are given in the element array.

Formation of Complete Stiffness of System - Because of the large

matrices that are developed in the solution of practical prob-
lems, the stiffness matrix used in Eq. 12 is not formed. Since
the complete stiffness matrix contains meny zero elements, only
the non-zero elements are developed and retzined by the program;
thus, it is possible to treat large plane stress systems without
exceedlng the storage capacity of the computer.

Formatlon of Nodal Point Loads - The loads acting on the nodal

points are composed of live loads, dead loads, and temperature
loads. The equations which are used to determine these loads
have been presented in the preceding sections of this report.

Formation of Nodal Flexibilities -~ The nodal point flexibilities

are determined from the previously developed stiffness coeffi-
cients. The flexibilities associated with the boundary nodal
polnts are modified by the application of Egs. 320, as

required.
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Iterative Solution - The repeated applicatlon of Egq. 27 at

all nodal points constitutes the iteratlive procedure. The sum
of the absolute magnitude of the unbalanced forces at all nodal
points (given by Eq. 26) is also computed for each cycle; this
sum, when compared to the covergence 1imit, serves as a check
on the convergence of the procedure. In all analyses presented
in this report, this sum was reduced to less than 1/10000 of
the value obtained in the first cycle of iteration.

Calculation of Stresses - From the nodal polnt displacements,

with the ald of Eg. 8 and Eg. 33, the stresses 0x> Ty and
Z;Y are calculated for all element and nodal points. As
added information, the principal stresses ‘Ti and Oé and
directions © are also calculated,
OQutput Information - At desired points in the iteration pro-
cedure, nodal displacements, element stresses and nodal point
stresses are printed. Flg. 17 1llustrates the form of the
computer output, in a typlcal case.
Timing

For the IBM 7090 the computational time required by the
prozram is approximately equal to 0.006 n.m seconds, where n
equals the number of nodal points and m equals the number of
cycles of iteration., The number of cycles required depends on
the accuracy of the initially assumed dlsplacements and oun the

desired degree of convergence.
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NODAL POINT X-DISPLACEMENT Y-CISPLACEMENT
1 0.BEI2B2E-02 C.eB52£2L-03
2 0.9C196¢E~02 —(.5019¢6E-C3
3 0.780701E-02 -C.THCTCLE-OQ3
&4 0.710852€E-02 C.T71CBS2E-03
5 0.0538949E-02 -(.£53059¢6-03
& 0.550251E-02 C.59C251E-03
7 0.557266E~-02 =C.5512¢6E-03
] N.516T12E-02 C.516712E-01
9 U.#EbZT%E"D? ~{ L 4BE274E-C3
icC 0.455815E-02 C.455815E~C3
11 0.439421E-02 -C.43G421E-03
12 0.421725E-02 C.4217Z5E-03
13 0.4C7061E-02 C.4070&£1E~03
L4 D.4C624EF-02 .262212E-04
15 0.4CT2BEE-02 -C.4072B6E-03
N-POINT -  X-STRESS _ _Y-STRESS XY-STRESS MAX-STRESS MIN-STRESS DIRECTION
1 . -1:6910 2.E8l4 0.C177 Z.88 -1.99 -B9.79
2 -2.28C0 31006 0.1642 3,12 -2.29 -88.26
3 -1.P382 2.4179 0.C536 2.42 -1l.84 -B9.28
4 —l.4487 1.9338 -0.C289 1.93 -1.45 B9.51
5 -1.1172 1.6183 0.C399 1.62 -1.12 -89.17
& -g.B312 1.3193 ~0a025% 1.32 -0.82 B9.32
7 -0.L4€0 1.13%3 0.C191 1.14 -0.65 ~-89.39
a -0.45%C2 0.9763 ~-0.C2C4 0.98 -0.45 89.18
9 ~0.3436 0.RB3IR9 0.C145 .84 -0.34 -89.30C
10 -0.2248 0.721Y9 -0.C134 Q.72 =0a.23 89.19
11 -0.1031 G.t400 0.C064 0D.64 -0.10 -89.51
o e . _=0.CT7C9 . 045920 -0.C0177 0.%9 -0.07 8B.a7
13 -C.C331 0.4581 -0.C20% 0.46 -0.03 87.61
L4 ~0.Ca21 0.4B853 0.C017 0.49 ~0.04 -B9.B6
15 ~-0.C655 0.5145 0.C239 0.52 -0.07 -87.65
. ELEMENT K-STRESS Y=-5T1RESS XYy-STPESS MAX-STRESS MIN-STRESS DIRECTION
1 -2.28C0 3.11C6 0.1642 3.12 -2.29 -88.26
2 -1.8765 2.3062 -D.1289 2431 -1.88 BB.24
3 -1.4384 1.B954 0.12586 1.90 =1.44 ~87.85
4 -1.C554 1.£169 -n.CB33 1.62 -1.0¢ BB.22
5 -0.B491 1.2704 0.CTTH 1.27 -0.8% -87.91
& -0, 6017 1.1397 -0.CT04 Lal4 =0 .60 BT.4L9
T =0.4T7t4 0.5562 0.(5C4 0.96 =0.48 ~-B87.98
a8 -0.31¢9 0. 8360 =-0.0412 O.084 -0.32 87.95%
9 -0.2282 0.T057 0.C343 0.71 -0.23 -87.90
10 -0.1325 0.&6443 ~-0.C0333 0.65 -0.13 B7.5%
11 -0.C331 D.6014 0,C0CH 0.60 -0.03 -89.94%
12 -C.C655 0.5145 0.0239 D.52 -0.07 -B87.65%
13 -0.0331 0.4581 -0.,C2C5 N.4& -0.03 87.61

66

Program Listing - For the sake of

oompleteness, a Fortran listing

of the basic computer program for linear analysis is included

This will enable others who may wish to utilize thls approach

to avold some of the tedious detalls of programming. It also

should be pointed out that the portions of the program which are
assoclated with the formation and sclution ofrthe stiffness
matrix are independent of the type of structure and therefore

may be used for other problems in structural analysis
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PROGRAM LISTING

PLANE STRESS ITERATION==JUNE 1962
DIMENSION AND COMMON STATEMENTS

DIMENSION NPNUM(340) sXORD(340)9YORD{3401}
1DSX(340)sDSY(340) 9 XLOAD(340) s YLOAD(340) s NP(340+10)sSXX(34005)»
2SXY(34099)9SYX(34099)9SYY(34009)9NAP{340)

DIMENSION NUME({S550)sNPI(550}sNPJ(550) yNPK{550) sET(550) sXU(550]) s
1RO(550) +COED(550) sDT(550) s THERM(550) sAJ(550) sBJI(550) »AK(550) ¢
2BK(550) sSIGXX(550) sSIGYY(550)9SIGXY(550) s SLOPE(340)

DIMENSION NPB(340) sNFIX(340)sLM(3)sA(6+6)9B(696)9sS(696)

COMMON SXX#sSXYsSYXsSYY

EQUIVALENCE (SIGXXsRO9NPB)s (SIGYYsCOEDsNFIX)s (SIGXYsDTeSLOPE)

READ AND PRINT OF DATA

READ 100

PRINT 99

PRINT 100

READ 1% NUMEL sNUMNP sNUMBCsNCPINsNOPINSNCYCMs TOLERIXFACHT1
PRINT 101 sNUMEL

PRINT 102 sNUMNP

PRINT 103 sNUMBC

PRINT 104 sNCPIN

PRINT 105sNOPIN

PRINT 106»NCYCM

PRINT 107sTOLER

PRINT 108 9¢XFAC

READ 29 [NUME(N) oNPIIN)sNPJIN) sNPKIN)pETIN)sRO(N)» XU(N)sCOEDIN)
IDT{N) sN=1 s NUMEL)

READ 3+ (NPNUM(M) s XORD (M) s YORD(M) ¢ XLOAD(M) s YLOAD(M) »
1DSX{M)sDSY (M) sM=1 9 NUMNP)

IF (T1) 1604155160

PRINT 110

PRINT 29 (NUME(N) oNPI(N)sNPJI(N) o NPKIN)SETIN)sRO(N) s XU(N)sCOEDIN)»
IDT(N) sN=1 oNUMEL )

PRINT 111

PRINT 1099 (NPNUM(M)sXORD(M)sYORD(M) 9 XLOAD(M) 9 YLOAD (M) »
1DSX(M) sDSY (M) sM=1 ¢ NUMNP )

INITIALIZATION

NCYCLE=0
NUMPT=NCPIN
NUMOPT=NOPIN
DO 175 L=19sNUMNP
DO 170 M=1+9
SXX({LoM)=060
SXY(LsM)=0e0
SYX(LsM)=0.0
SYY(LsM)=0,0
NP(LsM)=0
NP(Ls+10)=0
NP(Lsl)=L
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MODIFICATION OF LOADS AND ELEMENT DIMENSIONS

DO 180 N=1sNUMEL

ET(N)=ABSF{ET(N))

I=NPT(N)

J=NPJ(N)

K=NPKI(N)

AJ(N)=XORD(J}=XORDI(I)

AK (N)=XORD(K)=XORDI(I)

BJ(N)=YORD{J)=YORDI(1)

BK{N)=YORD(K)~YORD(1)
AREA=(AJ({N)#BK(N)-BJ(N)*AK(N}) /2

IF (AREA) 70197014177
THERM(N)=ETIN)*COED(N)%¥DT(N) /(XU(N)=1s)
DL=AREA*RO(N} /3
XLOAD(1)=THERM(N)*{BK{N}=BJ(N})/2«+XLOAD(I)
XLOAD(J)==THERM(N)*¥BK{(N) /2 ¢+XLOAD (J)
XLOAD(K)=THERM(N)*BJ(N) /2+s+XLOAD(K)
YLOAD(T)=THERM(N)* (AJ(N)=AK(N))/2++YLOAD(I)-DL
YLOAD(J)=THERM{N)*AK(N)/2¢+YLOAD(J)~DL
YLOAD(K)=—THERM(N)®*AJ{N} /2+YLOAD (K}=DL

FORMATION OF STIFFNESS ARRAY

DO 200 N=1sNUMEL
AREA={AJ(N)}*BK(N)-AK(N)%*BJ(N) ) *45
COMM=425%*ETIN)/((1s=XU{N)®*%2)*AREA)
Al191)=BJ(N)=BKI(N)

Al1+2)=040
Alls3)=BK(N)
Al1+4)=040
Al195)==BJ(N)
All+6)=0.0
A(2+1)=040
Al2s2)=AK(N)=AJ(N)
Al(2:3)=0.0
Al2s4)==AKI(N)
Al2+5)=0e0

Al2s6)=AJ(N)
Al3s1)=AK(N)=AJ(N)
A(392)=BJ(N)=BKI(N)
Al3s3)==AKIN)
Al344)=BKI(N)
Al{395)=AJ(N)
Al246)==BJ(N)
Bl{lel)=COMM
B{l1s2)=COMM#XUI(N)
Bl{1s3)=0e0
B{2s1)=COMM%XU(N)
Bl2+2)=COMM
B(2+3)=0s0
B(39s1)=0e0
B(3+2)=040
B(3¢2)=COMM*(1.=XU(N))¥*,:5

DO 182 J=146
DO 182 I=143
S(IsJ)=0.0
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DO 184 I=1
S(IeJ)=0e0
DO 184 K=1493

S{T9J)=S{I1+sJ)+BL{TsK}I*A(K»J)

LM{1)=NPI(N}

LM(2)=NPJ(N)

LM{3)=NPKI(N)

DO 200 L=143

DO 200 M=1+3

LX=LM(L)

MX=0

MX=MX+1

IF(NP{LXsMX}=LM(M)) 19091959190
IF(NP(LX9MX}} 18541954185
NP{LXsMX})=LM(M)

IF (MX=10) 19637029702
SXXILXaMX)=SXX(LXoMX)+S(2%L=192%M=1)
SXY(LXoMX)=SXY{LXIMX)+S({2%L~192%M)
SYX(LXsMX)=SYX(LXoMX)+S( 2% 9 2%¥M-1)
SYYILXeMX)=SYY(LXoMX)+S{ 2% y2%M)

COUNT OF ADJACENT NODAL POINTS

DO 206 M=1sNUMNP

MX =1

MX=MX+1

IF (NP{MsMX)) 20692064205
NAP (M) =MX=1

INVERSION OF NODAL POINT STIFFNESS

DO 210 M=1NUMNP
COMM=SXX(Me 1} #SYY (M9l ) =SXY(Ma1l)%SYX{Ms1)
TEMP=SYY(Ms1) /COMM
SYY(Msl)=SXX(Myl)/COMM

SXX(Msl)=TEMP

SXY(Mpl)==SXY(Ms1l)/COMM
SYX{Mel)==SYX(Ms1l)/COMM

MODIFICATION OF BOUNDARY FLEXIBILITIES

PRINT 112
READ 49 (NPB(L)WNFIX(L)sSLOPE(L)sL=1sNUMBC)"

PRINT &» (NPB(L)sNFIX(L)sSLOPE(L)sL=1sNUMBC)

DO 240 L=1sNUMBC

M=NPBI(L)

NP{Msl)=0

IFINFIX(L)=1) 22542204215
Ca(SXX(Ms1)%SLOPE(L)=SXY(Ms1))/(SYX(Mp1)#*SLOPE(L)=SYY{Ms1))
R=1,=-C#SLOPE(L)

SXX(Msl)= {SXX(Mal)=CHSYX(Mo1))/
SXY(Ms1)m (SXY(Ms1)=CHSYY(Mo1))/

X 0
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SYX({M»1)=5XX(Ms1l)*SLOPE
91)

{L)
*SLOPE {

SYY(Ms1)=5SXY (M L}
GO TO 240
220 SYY{Msl)=SYY{Msl)=SYX(Mal)H*SXY(Ms1)/SXX(Msl)
GO TO 230

225 SYY(Ms1)=0.0
230 SXX(Ms1)=0.0
235 SXY(Msl)=040

SYX(Ms1)=0s0
240 CONTINUE

ITERATION ON NODAL POINT DISPLACEMENTS

243 PRINT 119
244 SUM=0.0
DO 290 M=1)NUMNP
NUM=NAP (M)
IF (SXX(Ms1)+SYY(Ms1)) 275429049275
275 FRX=XLOAD (M)
FRY=YLCAD (M)
DO 280 L=29sNUM
N=NP (MsL)
FRX=FRX=SXX{MsL)*¥DSXIN)=SXY{MsLI*DSY(N}
280 FRY=FRY=SYX(MsL)*DSX(N)=SYY(MeL)%DSY(N)
DX=SXX(Ms1)¥FRX+SXY{Ms1)¥FRY-DSX (M)
DY=SYX(Mp1)#FRX+SYY(Ms1) #¥FRY=DSY (M)
DSX(M)=DSX(M) +XFAC*DX
DSY(M)=DSY(M}+XFAC*DY
IF (NP(Ms1)) 28592904285
285 SUM=SUM+ABSF(DX/SXX{Ms1))+ABSFIDY/SYY(Mel})
290 CONTINUE

CYCLE COUNT AND PRINT CHECK

NCYCLE=NCYCLE +1

IF (NCYCLE=NUMPT} 305+300+300
300 NUMPT=NUMPT+NCPIN

PRINT 120sNCYCLE s SUM
305 IF (SUM=TOLER) 40094009310
310 IF{NCYCM=NCYCLE} 40094000315
315 IF (NCYCLE=NUMOPT) 244+3200320
320 NUMOPT=NUMOPT+NOPIN

PRINT OF DISPLACEMENTS AND STRESSES

400 PRINT 99
PRINT 100
PRINT 121
PRINT 1229 (NPNUM(M)sDSX(M)sDSY(M)sM=1 9 NUMNP)
PRINT 123
DO 420 N=1,NUMEL
I=NPI(N)
J=NPJ(N)
K=NPK(N)
EPX=(BJIN}=BKIN) ) *¥DSX(1)+BK(N)*DSX(J)=BJ(N}®DSX(K)
EPY=(AKIN)=AJ(N) ) *DSY(I)~AK(N)*DSY(J)+AJ(N)#DSY(K)
GAM= (AK(N)=AJ(N})*DSX(T)-AK(N)*DSX(J)+AJ(N)*DSX(K)
1 +(BJIN)=-BK(N))*DSY(1)+BK(N)#DSY(J}-BJ(N) ¥DSY(K)
COMM=ET(N)/({(1a=XU(N)#%#2)* (AJIN)*BK(N)=AK(N)*¥BJI(N)})



405
410

415
420

830
B35
B40

845

850

860

805

X=COMM%{ EPX+XU(N)*EPY }+THERM(N)
Y=COMM*{ EPY+XU(N) *EPX )+ THERM(N)
XY =COMMEGAM* (1 e=XU{N)} ) #45
SIGXX{N)=X

SIGYY{N)=Y

SIGXYIN)=XY

C={X+Y})/2.0
R=SQRTF{( (Y=X)/ 20} %%24XY¥%2)
XMAX=C4+R

XMIN=C=R

PA=045%572295TBRATANF { Zeo¥* XY/{Y=X))

IF {2 e%¥X=XMAX~XMIN) 40504200420
IF (PAY 41044204415

PA=PA+90.0

GO TO 420

PAzPA=~G0+0

PRINT 124» (NUMEIN)aXaYsXYsXMAXsXMINWPA)

PRINT 823
DO 900 M=s1sNUMNP
X=0.0
Y=0a0
XY=0.0
SRX=0.0
SRY=0.0
R=0e0
DO 860 N=1sNUMEL
I=NPI(N}
JENPJIN)
K=NPKIN)
1F (M=I) 830s8504830
1IF {(M=J) 835+8454835
IF {(M=K) 86048404860
I=NPK{N)
K=NPI{N}
GO TO 850
I=NPJ{N}
JENPT(N)
A=ABSF (XORD (J)+XORD(K =2+ #X0ORD! 1
B=ABSF{YORD{J)+YORD({K|=2+#YORDI(I
RY=B/(A+B)
S5RY=SRY+RY
Y=Y+S51IGYY (N} #RY
RX=A/{A+B)
SRX=S5RX+RX
X=X+SIGXX {N)*RX
R=R+1s+0
XY=XY+SIGXY{N}
CONTINUE
X=X/SRX
Y=Y /SRY
XY=XY/R
C=(X+Y) /240
R=SQRTFILIY=X)/2.0)%%24+XY%%2)
XMAX=C+R
XMIN=C=R

H
)

PA=0.5%5T.29578B*ATANF ( 24% XY/(Y=X))

IF (24%X=-XMAX=XMIN}) 80548201820
IF (PA) B810s820s815

71
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810 PA=PA+5040
GO TO 820

815 PA=PA~90.0
820 PRINT 1249(MeXsYs XY XMAXsXMINsPA)
900 CONTINUE

IF (SUM=TOLER) 440+440+430
430 IF (NCYCM-NCYCLE) 44004409243

440 GO TO 150
PRINT OF ERRORS IN INPUT DATA

701 PRINT 711s({N)
GO TO 440

702 PRINT 712¢(LX)
GO TO 440

FORMAT STATEMENTS

1 FORMAT (61492E12659411)
2 FORMAT (41444E12649FBod&)
3 FORMAT (11444FBs192F1248)
4 FORMAT (214+1F843)
5 FORMAT (3E1548)
99 FORMAT (1H1}
100 FORMAT (72H BCD INFORMATION

1 }

101 FORMAT(29HONUMBER OF ELEMENTS =l14/)

102 FORMAT(29H NUMBER OF NODAL POINTS =114/)

103 FORMAT(29H NUMBER OF BOUNDARY POINTS =114/)

104 FORMAT(29H CYCLE PRINT INTERVAL wll4/)

105 FORMAT(29H OUTPUT INTERVAL OF RESULTS =114/)

106 FORMAT(29H CYCLE LIMIT wll4y)

107 FORMAT(29H TOLERANCE LIMIT =1E12e4/)

108 FORMAT(29H OVER RELAXATION FACTOR =]F6s3)

109 FORMAT (1I894F120192F1248)

110 FORMAT (74HI1EL. I J K E DENSITY POISSON
1 ALPHA DELTA T)

111 FORMAT (B80OH1 NP X=0RD ¥=0RD X=LOAD Y=LOA
1D X=DIsSP Y=DISP)

112 FORMAT (20H BOUNDARY CONDITIONS)

119 FORMAT(34H0O CYCLE FORCE UNBALANCE)

120 FORMAT (1112+1E2046)
121 FORMAT (42HONODAL POINT X=~DISPLACEMENT Y=DISPLACEMENT)
122 FORMAT (1112y2E15.6)
123 FORMAT(120H1 ELEMENT X-STRESS Y=STRESS
1 XY-STRESS MAX-STRESS MIN=-STRESS DIRECTION)
124 FORMAT (1T110+3F20e435X93F1542)
711 FORMAT (32HOZERO OR NEGATIVE AREAs ELe NOe=1l14)
712 FORMAT (33HOOVER 8 NePes ADJACENT TO NePs NOsll4)
823 FORMAT(120H1 N=POINT X=STRESS Y~STRESS
1 XY=STRESS MAX=STRESS MIN=STRESS DIRECTION)

END

At the present time (Dec. 2013), this FORTRAN program should be less than 3 pages — Ed Wilson



