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Structural Analysis of Axisymmetric Solids

Fowagrp L. Winson*
Aerojet-General Corporation, Sacraments, Calif.

The finite element method is applied to the determination of stresses and displacements
in axisymumetric solids of arbitrary geometry subjected to thermal or mechanical loads. Com-
plex structures with anisotropic material properties are included in the formulation. The
structure is replaced by a system of elements interconnected along circumferential joints or
nodal circles. Based on energy principles, equilibrinm equations for the complete structure
are formed. In the case of axisymmetric loading, the radial and axial displacements at the
nodal circles are the unknowns of the system. For nonaxisymmetric loads, the three dis-
placements at each nodal cirele ave expanded in Fourier series. By recognizing the orthogo-
nality properties of the trigonometric functions, the analysis is divided into a sum of a series
of two-dimensional analyses. In this investigation, the preceding procedure is used as the
basis for the development of computer programs for the stress analysis of axisymmetric solids.
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Examples axe presented to demonstrate the validity and practicality of the method.

1. Introduction

N the aerospace industry, the stress amalysis of complex
axisymmetric structures of arbitrary shape subjected to
thermal and mechanical loads is of considerable interest.
Rocket nozzles and cases, solid-propellant grains, and space-
craft heat shields are practical examples of such structures.
Although the governing differential equations for solids of
revolution have been known for many years, closed form solu-
tions have been obtained for only a limited number of struc-
tures; thus, the stress analyst must rely -on experimental or
numerical techniques. The finite difference method has
been the most popular of the numerical techniques; however,
for structures of composite materials and of arbitrary geom-
etry, this procedure is diffieult to appiy.

In the present investigation, the finite element idealization
is used as the basic numerical procedure. This technique
has heen applied successfully in the stress analysis of many
complex structures.!=® In Ref. 4 impressive resulis were ob-
tained in the analysis of axisymmetric shells approximated
by a series of truncated cone elements. The approach, which
is presented here, i3 similar in many respects to existing meth-
ods used in the analysis of two-dimensional stress problems.s—7
Recently, the finite element method was applied to the strue-
tural analysiz of axisymmetric solids subjected to axisym-
metric loads.® In the present paper, the finite element
method is used in the determination of stresses and displace-
ments developed within elastic solids of revolution which are
subjected to axisymametric or nonaxisymmetric loads. Em-
phasis is placed on the application of the technique to complex
aerospace structures.

II. Method of Analysis

The term finite element indicates the type of idealization,
which is used to reduce the continuous struciure to a system
of discrete bodies. The redundant force or flexibility method
may be applied for the solution of a system of finite elements;
however, if an automated digital computer program is to be
produced, the displacements and internal stresses of the sys-
tem are generally determined by the direet stiffness method,
sinee this approach is most readily programed.

In the finite element approximation of axisymmetric solids,
the continuous structure is replaced by a system of axisym-
metric elements, which are interconnected at cireumferentgial
joints or nodal circles. Figure 1 illustrates a finite element
idealization of a typical axisymmeiric solid. Equilibrium
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equations, in terms of unknown nodal circle displacements.
are developed at each nodal eircle. A solution of this set
of equations constitutes a solution to the system. :

The advantages of the finite element method, ag compared
to other numerical approaches, are numerous. The method
is completely general with respect to geometry and material
properties. Complex bodies composed of many different
materials are easily represented. Since anisotropic materials
are automatically included in the formulation, filament
structures are readily handled. Displacement or stress
boundary conditions may be specified at any nodal cirele
within the finite element system. Arbitrary thermal, me-
chanical, and accelerational loads are possible. Mathe-
matically, it can be shown that the method converges to the
exact solution ag the number of elements is increased®; there-
fore, any desired degree of accuracy may be obtained. In
addition, the finite element approach generates equilibrium
equations, which produce a symmeiric, positive-definite
matrix, which may be placed in a band form and solved with
a minimum of computer storage and time.

A. Equilibrium Equations for an Arbitrary Finite
Element System

The first step in the determination of an expression for
nodal circle forces in terms of nodal cirele displacements for

-

B TRIANGULAR ELEMENT APPROXIMATION

Fig. 1 Finite element idealization.
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a finite element system is to assume a form for the displace-
ment field within each element. It is necessary that this
displacement field satisfies compatibility between elements
of the system. Based on this approximation, an expression
for the displacements [um™] within a typical element m in
terms of the nodal circle displacements [%] is developed.

[wr] = [d=][u] )

Also, the strains [em] within the element are expressed in
terms of nodal circle displacements.

[e=] = [om]u] @

The column matrix [u] contains all of the possible nodal
circle displacements; therefore, the matrices [dn] and [am]
contain mostly zero elements.

For an elastic material, the stresses at any point within the
element are expressed in terms of the corresponding strains
and thermal effects by the elastic stress-strain relationship.
Or in matrix form

[o=] = [C][en] — [7=] 3

From a consideration of energy principles® the force
equilibrium of a system of finite elerents is written as

@] = [Kliu] 4

The stiffness matrix for a complete system of M finite ele-
ments is given by the summation of element stiffnesses

M
K] = 21 (=] (5
and the load matrix is given by
M
@1 = 181+ 3 (L] ®)

where [8]is a matrix of concentrated nodal civele loads, which

are applied externally. The element stiffness matrix is de-
fined as

el = | Tanl7iC=]ian] av @
and the element load matrix is given by
) = [, {ld=)riPe] + lami7lrm)} av +
... @=ripe]as (se)
area
where [F]is a matrix of body force components, and [P»] is
a matrix of surface tractions. The surface integral exists
only if the mth element is on a loaded boundary of the struc-
ture. - For the purpose of simplicity, the present paper will

be concerned with only thermal loads; therefore, Bq. (8a)
may be rewritten as

[L=] = fla»)T[7r=]-dV (8b)

B. Boundary Conditions

Equation (4) represents the relationship between all of the
nodal circle forces and all of the nodal eircle displacements.
Mixed boundary conditions are considered by rewriting Fq.

K

L8 \
r; i

i

Fig. 2 Triangualar
element.
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(4) in the following pattitioned form:

BN
Qb K. " K U

where [Q.] is the specified nodal point forees, @] is the un-
known nedal point forees, [u.] is the unknown nodal point
displacements, and [w] is the specified nodal peint-displace-

ments. The first part of Eq. (9) may be written as a separate
matrix equation

1Qa] = Haallwa] + [Ku]lwn] (103
and then expressed in the following reduced form:
[Q%] = [Kas]lua] (1
where the modified load vector is given by
(@] = [Q.] — [Kus][w] {12)

After Eq. (11) is solved for the nodal point displacements,
the strains within any element in the system are evaluated
by the direct application of Eq. (2). 'The corresponding
stresses are calculated from the sfress-strain relationship,
Eq. (3).

III. Element Stiffnesses

Several types of elements may be used in the representation
of a structure. Although a ring with a triangular cross
section is the most versatile, for purposes of automatic mesh
generation, a quadrilateral element is often desirable. A
truncated cone element is useful in the approximation of the
flanges of sandwich type structures. For convenience, the
superscript m, which denoted a typical element in the previous
section, will be omitted in the remaining development.

A. Triangular Ring Element: Axisymmetrie Load

The cross section of a typical triangular ring element is
shown in Fig. 2. The displacements in the r-z plane within
the element are assumed to be of the following form:

U (1,2) = by + bar + by 2 (13a)
’Mz(ﬁ", z) = b4 —}" b5?' -+ bﬁ 2 (13b)

This linear displacement field assures continuity between
elements, since “lines, which are initially straight, remain
straight in their displaced position.”

If Eqs. (13a) and (13b) are evaluated at the three vertices
of the triangular ring element, the following matrix equation

is obtained:
Tt .t 1 v, z1[b b
urf' u,,?' = 1 T2 bg b5 (14)
uF Uk 1 7 2|l bs b

A solution of Eq. {(14) yields the following expression for
the eonstants b; in terms of the displacement at the vertices:

bl b4 uri u;i‘
by bs | = [D]| vt us (15a)
by b wr ut

1| T — e e — mize moz — e
[D] = & — 2 Zx — % 2; — % (15b)

Ty — 75 i — T Ty — 7

where

in which
A=rlme — 2) £l — oa) o — 2)

Equation {15a) may be written in an expanded form where
the constants and displacements are column matrices:

[p] = [A]{u] (16)
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The strains within the element are obtained from Eqs.
(13a) and (131), thus
&r = OU/Or = ba € = QU /02 = By
€ = /T = (1/1)b + by + (/703
€: = (Qu,/0Z) + (Ou./0r) = by + bs

which may be written in matrix form as

£rr 0 1 0 0 0 0 bl

€25 bz

0 0 0 0 0 1,
= b (172}

/0 1 2/ 0 0 OFf ¢

€8s by

€r 0 0 1 0 1 0] b

or symbolically

le] = Igllb] : (17b)

The substituiion of Eq. (16) into Eq. (17) yields

le] = lg]in]lu]

Thus, the strain-displacement fransformation matrix, as
defined in Eq. (2), is

le] = [gliA] (18)

With this definition of [a], the element stiffness matrix,
Eq. (7), is rewritten as

k] = J [A]7ig)7IC)Ig]lR]-dV (19}

Since [k] is not a funetion of space, Eq. (19) becomes

(k] = RIm{Slgl7 [Cllg)-dV ) [R] 20
and the thermal load matrix, Fiq. (8b), reduces to
(L] = (k)7 {Slg]7[7]-dV} (21)

For most axisymmetric structures, the following anisotropic
stress-strain relationship is sufficiently general:

Grr C 11 012 ¢ i 0 Err TL
Gzz | Cp Cn Cn O €40 | _ | T2
ae | Ca Cn Cu 0 €00 LEN I (22)
Crs 0 0 0 Culle 4]

where
11 = F(Cn a + Cno. + Cis ap)
7= T(Ciz &, + Com 0; + Cz tg)
73 = T(Cis ar + Cu-o. + Coz atp)
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and
(L/r)rs
1+ 7
@it = | # e
0
T2

Equations (23) and (24) may be coded directly, since the
integrals over the volume of the element for the various func-
tions are most conveniently evaluated numerically within a
computer program. The singularity at » = 0 i3 handled by
setting the radius of the nodal circles at the axis of symmetry
to a small finite valve; then, the boundary condition of zero
radial displacement is enforced. The element stiffness
matrix, Eq. (20), and the thermal load matrix, Eg. (21), are
then formed by standard matrix operations.

B. Triangular Ring Element Nonaxisymmetric Load

In this section a theory is presented for the analysis of
solids of revolution subjected to nponaxisymmetric loads,
which are symmetric about a plane containing the axis of
revolution. The methed involves the expansion of the
tenperature distribution, nodal eirele forees and nodal circle
displacement in Fourier series.

T =ZT,(r 2 cosnf (25a)
Sr = Z 8. (r, 2} cosnf (25b)
8, = Z 8 (7, 2) cosnd (25c)
8p = Z Spu (r, 2) sinnd (25d)
Ur = Z U (7, 2) cOsn (25e)
Uy = Z Uy, (r, 2) cosnf (25f)
g = Z up, (r, 2) sinnf (25g)

By making use of the orthogonality properties of the har-
monic funetions, the three-dimensional apalysis is divided
into a series of uncoupled two-dimensional analyses in which
the displacement amplitudes w, are the unknowns. For a
typical harmonic n, Eq. (7) and (8) are rewritten as

k] = (RIT{STgn)7[CgaldV} TR . (26a)
(L] = [B])7{fgal?[74] V) (26b)

Within each element, the displacements are assumed fo
be linear functions in the r-z plane, or

Uy = Z (bin + bow r + bua 2) cosnf (27a)
Uy = Z (b F bsn 7 + ben 2) cOIRE (27b)
Ug = 2T (bin + ban* + Do 2) sinnd {27¢)

The strains, which correspond to these displacements, are

and o, o, and op are the coefficients of thermal expansions € = I € COSRE = Ot/ O (282)
in the r, z, and ¢ directions, respectively. For this type of fr = % € cOSRE = Du,/Oz (28h)
material, the terms under the integral in Egs. (20} and (21)
are ‘ €0 = 2 egon cOSnB = (1/r)(Oup/00) + (u./r) (28¢)
g]7[Clg] = € = B € 00300 = (Ou,/02) + (Du./Or) (28d)
(179 Cx (1/1)(Cu + Co)  (2/r9C5 00 (U/1Cn
WnMCa+ Cr) Cu+203+Cu &M {Ca+Cx) 0 0 O+ Cx
(2/1%5Cxn (/)€ + Cw)  (2%/r0u 4+ Cu 0 Cu (z/r10x (23)
0 0 0 0 0
0 0 Cu 0 Cu O
(1/7)Cs Chs + (/1) Cus 00 O
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Fig. 3 Quadrilateral
element.
3 4
6o = T ean sinnd = (1/¢) (0u/08) + @ua/Or) — (uo/r)
. (28¢)
&g = Z & sinnf = (Quy/02) + (1/7)(0u,/06) (281)

From these equations, the strain amplitudes ;. are obtained
from the assumed displacements, Egs. (27}, and are written
in the following form:

€rn || 0 1 0 0
€ || O 0 0 0
€50n, 1 / r 1 Z / T 0
€rzn 0 0 1 0
Gon || —(m/7) —n —(nzg/r) 0
€0, 0 o 0 —(n/7)
or symbolically
[ex] = [g.]11Bn] (29h)

The evaluation of Eqs. (27) at the vertices 4, 7, and & re-
sults in an expression for the coefficient b, in terms of the dis-

placement amplitudes wu,:
ueni
'Eﬂnj (30)

b‘}n
b.’m
Uga®

bln bi’n umi umi

b bon | = [DI wrid 1t

ban bﬁn b9n urnk uznk
where [D]is given by Eq. (15b). Equation (30) may be ex-
panded to yield a column matrix of the nine constants b, in
terms of a column matrix of the nine displacement  ampli-
tudes %,. Or in symbolic form

[6a] = [h]l2en] &1

For a given stressstrain relationship, element stiffness
matrices, Fq. (26a), and thermal load matrices, Eq. {26b), are
evaluated for each element in the system. These matrices,
for a given harmonic, are combined by direct stiffness tech-
nigues to obtain a relationship between unknown nodal circle
displacement amplitudes and known nodal circle foree
amplitudes. The number of these two-dimensional problems,
which must be solved, is determined by the number of har-
monics which is required to represent the nonaxisymmetric
loading.

Noda! Circle

] ;
i 2

Truncated Cone Element

Fig. 4 Cross section of truncated cone element.
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C. Quadrilateral Element

A typieal quadrilateral element is composed of four tri-
angular elements as illustrated in Fig. 3. For axisymmetric
loads, the equilibrium equations for the quadrilateral are
developed by standard direct stiffness techmiques and in-
volve ten equations, which are written in the following matrix
form; C

A koo | ko[ e L,
|::g—b:| B |:kba —- kbb][“b:l + |:Lb:|

where 8., Lo, and u, are associated with points 1-4, and S,,
L, and w, are associated with point 5. Equation (32) may
be written as two matrix equations, or

18:] = [kaalltta]l -+ Tkas][12] + [La] (33a)
[So] = [kaallutal £ [Ke]las] + [Le] {33h)
Equation (33b) may be solved for the displacements u:

(32)

fus]l = — ko] ksallua] + [hw] 2 [S] — [Lal}  (34)
bin
0 0 0 0 F 24
b3n
1 0 0 0 béﬂ
0 n/r n (nz/7) By {29a)
0 0 0 0 bin
0 =(1/ry 0 —(/n) b1,
—(nz/r) 0 0 1 s
L me .

If Eq. (34) is substituted into Eq. {33b), an expression is found
relating the forces at points 1 to 4 to the unknown displace-
ments at points 1 to 4 and the known loads

[Se] = [keullria] + [La) (35)

CASE

d) FINITE ELEMENT IGEALIZATION

LEGEND
EXACT
e CASE |
CASE 1§
CASE 111

RADIAL AND TANGENTIAL STRESS

<~

T 8
RADIUS

b) STRESS DISTRIBUTION

Fig. 5 Analysis of infinite cylinder.
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where the gquadrilateral stiffness matrix is
VCMI = [Faa] = [Fa U] hes) (36a)
and (he modified thermal load matrix is

(Fa] = (Lol [l il 7S]~ Ua] (B30h)

The wse of the guadrilateral substructure as a separate
element is desirable, since the resulting set of equilibrium
cquations has fewer unknowns for a given number of twi-
angular elements. In the case of nonaxisvmmetrie loads,
Y. (32) would juvelve 13 equations relating foree and dis-
placement amplitudes and would reduce to 12 equations by
a=imilar procedure.

13, Truncated Cone Element

In the stress analysis of thick sandwich shelly, the orilo-
tropie cone material is readily represented by solid trinngular
ring clements; and the face plates are iealized by a series
of truncated cone elements, each connccted at twe nodal
circles of the finite element system.  The appropriate theory
for the behavior of these axisymmetric shell elements sub-
jected {0 nonaxisynunetrie lommu is given here. The cross
section of a typical tuncated cone element is shown in Fig. 4.

Tor the case of nonaxizvinpmetric loading, the displace-
ments within the element are approximated by

w4 = 2 (b A Das) cosnl (37a)
W = 5 (bsn + by.8) cosnd (37
Up = T (b3, - bys) sinnd (37¢)

The constants b, ave obtained by evaluating the displacements
at the conneeting nodal circles

) i i i i
b = o Sl v ]
or expanded symbolieally in column matrix form ‘
(be) = 0] [s] (@s)
The inplane displacement within the element is
u, = U, COSW - W, Sl (39)
"The corvesponding inplane strains are
€os = 2 €44 COSNE = Ou, 08 - (40a)
' (/") e, 28) + (/1) (10D)
e = 3 egun sinnd = (1,7)(0u, 0F) -+ Dug,Ts) (400)

= ¥ g3, cosnf =

)

S
|

L

Thus, the strain amplitudes may be evaluated as

[, 0 cOsSw
3 s
€090 — z
= r r
n ns
€din - 7005&-‘ — ';(’05&-;
or symbolically
[e.] = [g.]'[b.] (41b)

Therefore, for a given stress-strain relationship, the element
stiffness matrix, Eqg. (26a), and thermal load matiix, Eq.
(261), may be evaluated for a truneated cone clement.

The preceding equations reduce to the axisymmetric loading

corclition when n is zero.
IV, Application

Several digital computer promeams have been developed
for the finite element analv<ds of axizvounciric structures.

STRUCTURAL ANALYSIS OF

ANISYMMETRI
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Fiz. 6 Typical solid rocket nozzle.
g

The most general of these programs requires as input a
complete numerieal definition of all nodal eircles wind
elements.  Therefore, axisymmetrie struciures may be con-
sidered which are composed of many interacting components
and ave of pmclicﬁl}\' any shape.  In addition, special pro-
grams with built-in mesh generators have been dm'(‘lupcd fur
~pcmﬁc types of structures. The examples, that are pre-
sented here, are intended to demonstrate the validity of the
method and to llustrate its application to complex stractures

A. Infinite Cylinder

An infinite eylinder subjeeled to an internal pressure for
which an exact solution is known is selected as & means of
demonstrating the accuraey of the finite element nmcthod,
In Fig. 50 meshes for three finite element analyses are
shown. 'The resulting radial and hoop stresses are plotieil
in Fig. 5b. Except for the very coarse mesh, agrecient
with the exact solulion is excellenl.  Stresses ave [lULti.li at
the center of the quadrilaterals and are obtained by wvernging
the stresses in the four conneeting triangles. In .
good Loundary stresses are estimated by plotting the Diterior
stresses and” o_\tupohtmg to the boundary. "This type of
enginecring judgement is always necezsary in evaluating ve-
sults from a finite element analysis.

[11G

B. Rocket Nozrzle

The typical rocket nozzle shown in Fig. 6 is =clec ted to
illustrate the application of the method to a complex axisym-
metiic structure subjected to axisymueteie thermal and pros
sure loading. The temperature distiibution within  the
graphite insert at a specific time is plotted in Fig. 7. The
element representation of the structwre, ax ~]1m\ noin Froo ¥

. - ) 0
0 sinw 0 b
Ban
0 0 L; ?178 bs (41)
" H)
bs-
b
D sines - 0 (3 .
T r

contains 3501 elements and 280 nodal circles. The tine
necessary to sclect the mesh and prepare the compnivy
input was approximately thiee man-days. The computer

Fig. T Teomperature eontours: nozzle insert.
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Fig. 8 Finite element idealization of nozzle.

time required by the TBM 7094 was three minutes. The com-
puter program produces the four components of stress within
each element and the two displacements of each nodal circle.
Hoop stress eontours are plotted in Fig. 9.

C. Spacecraft Heat Shield

A special program for the analysis of heat shields subjected
to nonaxisymmetrical thermal loading has been developed.
This program, which is based on the previeusly described
method, automatically generates a mesh of quadrilateral ring
elements, expands the temperature distribution inte Fourier
series and superimposes the harmonic solutions to obtain
the displacements and stresses at desired points within the
structure. A quadrilateral element representation of a typi-
cal heat shield is shown in Fig. 10a. In this case, the first
two rows of elements represent a sandwich shell and the
next four rows approximate the ablator. Truncated cone
elements are used to represent the flanges of the sandwich
shell. The temperature at the bond line between the ablator
and shell is plotted in Fig. 10b. The temperature is con-
stant through the shell and varies parabolically to a constant
temperature at the surface of the ablator, Figure 10¢ illus-
trates typical results, displacement at the bond layer.

Y. Discussion

The finite element method has been applied to the deter-
mination of stresses and displacements within complex struc-
tures of revolution subjected to nonaxisymmetric thermal
and mechanical loads. Since the method encompasses
several classes of practical engineering structures, its im-
portance as a tool in stress analysis is evident. With the aid

50004y L=EF
T E[o}-ll-_-__—-
; BRI e e
P S e R M A
Ly 4000

Fig. 9 Stress contours:hoop stresses.
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&
|
B . — 1
30 20 10 | |l 20 30

STATION
b TEMPERATURE DISTRIBUTION AT BOND LINE

_LEGEND,

¢) DISPLACEMENTS AT BOND LINE 3070

Fig. 10 Analysis of spacecraft heat shield.

of a computer program, the analysis of axisymmetrie struc-
tures is reduced toa simple procedure that may be conducted
without a detailed knowledge of the method or computer
programing.
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