SVYIVIFPOSIUIV OGCTOBER

N ™ THE USE OF 1-5 1362
computers Iin civll engineering
N & C| laboratorio Nacional de Engenharia Civil Lishon - Peortugal

2N

Conclusion — January 2014

As Ed reviews his last 60 years of professional activity, it is apparent that the symposium in
Lisbon, Portugal was one of the most significant eventsin his life.

First; Ray Clough and Ed presented the results of the analysis of alarge dam which clearly
illustrated the superiority of the finite element method compared to any other numerical or
experimental goproach used in world at that time. This paper was included in the proceedings
of the conferencewhich would have very limited distribution. However, the editor of the
international Bulletin RILEM (Reunion | nternationale des L aboratoires et Experts des Materiaux was
formed in 1948 and is till functioning) asked Ray and the symposium chairmen if RILEM could
publish the paper in their next edition of the bulletin. See the link shown below to read the

paper and to see the old FORTRAN program that automated finite element analyses:
http://edwil son.org/History/The%20First%20A utomated%20Fi nite%20El ement%20Program. pdf

Second; Ed presented hisfirst research paper in the field of Earthquake Engineering. During the
previous three years Ray and Ed (working as consultants for several structural engineering firms
In San Francisco) conducted linear seismic time-history analysis of different types of multistory
building. They used an early version of SMIS (Symbolic Matrix I nterpretive System written by Ed to
teach static and dynamic analysis of structures using matrix notation) to create the stiffness matrix. The
dynamic analysis was then reduced to a series of standard matrix operations using the mode
superposition method. However, they realize that in order to perform nonlinear dynamic
analysis of structures they would need to use a step-by-step integration method.

At that time most dynamic linear and nonlinear structural analysis was conducted using
Newmark'’s linear acceleration method in which the equations were solved by iteration at each
time step. Therefore, Ray suggested Ed use the Newmark’ s method and compare results with
the mode superposition method for linear structures. This paper can be read shown at

The maor contribution of this paper was to prove iteration was not required for dynamic
analysis by the step-by-step approach. In addition, they demonstrated the two methods produced
amost identical resultsif the same damping matrix was used by each method. Check the
following link to read Ed’ s recent recommendations on the nonlinear dynamic analysis of
structures:

http://edwilson.org/BOOK -Wilson/18-FM A .pdf




DYNAMIC RESPONSE BY STEP-BY-STEP MATRIX
ANALYSIS
by

Edward L.‘if\/“ils;on1 and Ray T/\?.Clcnug'h2

SUMMARY

The step-by-step _int‘egf‘ation procedure provides one of the
meost powerful digital computer techniques available for calculating
the respcnse of Iumﬁe-d'—-rééss sys.tems to arbitrary dynamic loads.
In this pape:‘.rthe step-by-step aﬁélysis is formulated as a se -
quence oI matrix operatioms . A unique feature of the develop-
ment permits the treatment of accelerations which vary linearly

‘during each time intervzal without need for the iterative opera -

)
ticns required by cther procedures.
Uise =f the method is demonstrated with a practical exam -

ple.Alsc preserted is a comparison with the mode-superposition

method with regard te relative computer storage requirements,

gccuracy and time required for computation. __ . ———r—- -

THTRODUCTION |

Although the theory of structural dynamics has long been under-
stood, the problem of evaluating the response of complex structures
to arbitrary dynamic loads was generally considered intractable from
a computational standpoint wntil electronic digitel computers were
applied to the task. K With the aid of digital computers; however,
almost any class- of dynemic response problen may now be undertaken.

In most practical cases the siructure which is analyzed is 2
luwnped parameter idealization of an actual structure, in which the mass
properties of the system are assumed to be separated from its elastic
characteristics for the purpose of the mathematical formulation.
Typically, this ideslization involves the assumption that the mass is
concentrated at diserete points such that the displacements of these
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masses may be described by & limited number of displacement coordinates.
The advantage of this lumped-mass idealization is that the equilibrium
conditions imposed on the system may be expressed by a finite number of
ordinary differential equations rather than the partial differential
equation required to describe the actual distributed mass system.

These simultanepus differential equations representing the
eguilibriun of the lumped-mass sysiem may be expressed most conveniently
as a matrix equation. Taen either of the two entirely different
approaches to the sc%utlon of this equaticn may be adopted. The mode-
superposition method\1l!® involves the solution of the characteristic
velue problem represented by the free vibration response of the system,
followved by the transformation to tThe principal coordinates determined
as the characteristic shapes of the system. This procedure uncouples
the respcnse of the system, so that the response of each coordinate
may be evaluated independently of the others. The second method of
dynenic analysis is called the step-by-step method, and involves the
direct numerical integration of the equilibrium eguations in their
original form, without transformation to the prineipal coordinates of
the system. '

One of the principal advantages of the mode-superposition method
lies in the fact that the response of the system is largely expressed
by the first few modes of vibration; thus, good accuracy may be obtained
by this method from an analysis involving only a few of the prinmcipal
coordinates, while all coordinates must be retained in the step-by-
step method. On the other hand, the evaluation of the characteristic
value problem and transformation to the principal cooidinates are
major computational problems not required of the step-by-step method.
Furthermore, the mode-superposition method is based on the assumption
of linear structural behavior, whereas the step-by-step method may be
applied to non-linear systems simply by modifying the assumed linear
properties approximately at each successive step of integration. Thus,
it is clear that there is need for both methods of dynamic analysis.

The purpose of this paper is to describe a matrix formulation of
the step-by-step integration procedure. In this form, the method is
applicable to the analysis of systems having any mumber of degrees of
freedcm. Furthemore, from a computaticnal standpoint it has the
advantage that the dynamic analysis program may be incorporated into
a general matrix interpretive scheme, and thus it becomes merely
another operation which may be applied in the matrix analysis of &

Humhers in parentheses refers to similarly mumbered References
listed at the end of the paper.



structure. Step=-by-step procedures are not new of caurseJ and have
been investigeted intensively by other authnrﬁ.t However, it is
believed that the formulation of the methad.preseuted here, which
permits the treatment of linear (or higher order) variations of
accelerations during the time increment without iteration, has definite
advantages over techniques which have been described before.

DERIVATION OF STEP-BY-STEF FORMULAS

- Equilibrium Equation

Assuming & viscous form of damping, the equilibrium of a discrete
mass system at time "t" is expressed by the following matrix equation:

ML+ [e)IX) + [KIIX), = (o}, @

where [}( }!. the displacement of the system
{X }t = the velocity of the system
[i: ]t = the acceleration of the system
{P L = the force scting on the system
M] = the mass matrix
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The solution of this set of second order differential equations may be
reduced to a sequence of recurring matrix equations if an assumption

is made as to the behavior of the system within & small increment of -
time.

- Iinear Acceleration Method

It will be assumed first that the acceleration associated with
each degree of freedom of the discrete mass system varies linearly
- within a time increment, At. This assumption, which is illustrated
in Fig. 1, leads to a parabolic variation of velocily and & cubic
variation of displacement within the time lncrement.
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¥Fig. 1 - Assumed Behavior of Typical Displacement Component

From a direct integration over the time interval for all mass points,

the following matrix equations for velocity and displacement at the end
of the time interval are obtained:

[le . [X}t-ae* 4t (X}, . + %!{X}t 25

{Xif - [x]t—.ﬁt + At [“f-ﬁé ¥ %53{5(“}2.,_&&4- *’%-g'z{)'f (2b)

The substitution of Egq. 2a and 2b into Eg.l yields the following
equation for the acceleration at the end of the time interval:

Wl =[F){1P)- [e)a) - W) o
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[F] = [M] + #(c] + & [K])
{ﬂ] = ‘lﬂmt il [ﬁf-#

{o} = ix.‘if-!f * ﬂfEi]t-z‘t dT_EﬁL At

From Eq. 2a the velocity at the end of the interval is given by

(i, = 131 o éfiix]t (%)
From Eq. 2b the displacement at the end of the interwal is given by
(x} = (b} + 2% (K], )

It is important to note that for linear problems the matrix [F] need
only be formed once since it is independent of timed

The solution of Eg. 1 proceeds as follows. The initial displace-
ment {¥| and the initial velocity {X[ are given as the initial
conditions of the problem. The initial acceleration {ﬂ, is obtained
from Eq. 1 as

(%], = [M[ —{c)x1, —[K] m.} | (6)

Then the step~by-step response of the system is given by repeated
application of Egs. 3, 4 and 5.

Table 1 sumarizes the essential equations of the linear accelera-
tion method.



TABIE 1 - Sumsary of Linear Acceleration Method

INiTIaL CaLcuafions |
(XL= (['{(?) - [c]{x], - (%)(x\

[F] =M ~ 4 [c] + 4o]'=[K!
S1e? - Y- S1ev Equa.ﬁm&s-

(1= (7P~ [elfe) - (K]0

[ﬂ:“- {a} + %{K]:

wﬂix}ﬁ (b} ~ 4£(x],
{Q} = {K}em& ET[ !
{b} = (Xlew ~ st [X Yy 4+ ﬁfz[i”]bﬁf

(;}Parabolic Acceleration Method

1t is possible, by & procedure similar to the one presented above,
to develop & set of formulas based on a parabolic variation of accelera-
tion within a small Increment of time. The derivation of these equations
is not given here. Only the results are summarized in Tsble II. This
method requires an increase in the number of operations per cycle;
however, as a result of the inecrease in asccurscy the time increment may
be increased. The use of this higher order method must be justified by
the characteristics of the particular problem to be solved.



TABLE II - Sumary of Parabolic Acceleration Method

hiTiar Cavcua lmiﬁ‘.

[Fl-—-[wl . - £
[]i{?i,—HH (K] {x1.]
m MI{(P) = [C){RL — [KI{xL)
NHE@{PT— [ ‘\
51:;? -BY- Sfev  EQuafions:
), -TF1 {7} — (C1Ma) — (K] (1]
\XL: fa} + 4 (X,

Simplification of |C | Matrix

For most practical structures the exact form of damping is unknown.
Since its effect on the response of a structure is generally small, a
simplifying assumption as to its form is justifiable. It has been

suggested that the tc matrix can be replaced by the following matrix
relationship LOF

(¢) = d[M] + p[K] o



The substitution of Eg. 7 into the set of equations presented in Table -1
yields a modified set of equations which ie shown in Table III.

TABLE I1I - Summary of Linear Acceleration Method With
Simplified Form of Damping

NI CancuiafioNs:

(%1 - (" [Pl -« (ML = [k)fc, = (%3]
[Fl= [(1+a4) (M + (4 + » D (K]
Sfer -8y - STer  Eauafions:

(%), = [F)f{ple~ o MIfe] - (K16} + p Lo}

(K} = e} + 4%},

(x], = {o] + (],

L]

1

Simplification of Load Matrix

In general, the applied loads which are associated with each degree
of freedom may each be an independent function of time. However, for
most practical problems this generality is nof necessary and the leoad
at any time t may be placed in the following form:

lel, = 5 [#] (8)

where [P} prescribes the distribution of lnad on the structure and
is & scalar multiplier indicating the load amplitude at time T .




In the case of an earthquake loading which is given in terms of
the ground acceleration, it can be shown easily that the matrix i’?}
is simply & wvector of the masses which are associated with the lateral
components of displacements and that §; is the ground acceleration
at time +t .

Element Forces

After the determination of the displacement fﬂf the forces {Fh
in the individual structural elements may be obtained from the matrix

Fle= LTl (9)

where [T is the same element force-displacement transformation matrix
that wo be used in the case of static loading. The form of this
matrix is not given here since it depends on the specific structure
that is being analyzed, bu*(: J‘jt may be derived by standard methods of
matrix structural anslysisl?),

welection of Time Increment

The selection of the time increment A¢ must be besed on &
consideration of the preoperties of the structure as well as the form
of the applied load. For the linear acceleration method, Newmarki2)
has suggested that Al should be less than 1/10 of the smallest
Period of the structure. Since the smallest period of the structure
is not always known, perhgps the simplest procedures is to try several
different time increments until the desired degree of accuracy is ~
obtalned. It is apparent that this approach is extremely ineffiecient;
however, this disadvantage affects only the length of computation,
which on modern digital computers is normally small compared with the
time required for complete formulation of the problem.

COMPUTER PROGRAM

Since the step-by-step methods presented here involve only standard
matrix operations they are easily programmed for the digital computer.
The generality of the program must depend on its intended use as well as
the type of computer used.

- Computer Storage

At any step in the analysis the matrices that must be retained in



storage in case of a.c-::elg method are {x]t,[”)f 1 { X}, »
{a)e 5{b)e ,[F:!tt t}!MLu - This involves
locations, or i 8 mﬂ.‘hrix is d.iagoml 2nt + Tn

The storage requirement is independent of the oumber of timﬂ i.m: ts
if the load P is read in at each step and the displacement [Xj; is
Printed at the desired output interval. It should be noted that the
output interval may frequently be much longer than the computation
interval Af , e.g. results may be printed only after every fifth or
tenth step.

The anmcunt of storage required by the program itself will depend
on the type of computer as well as the ability of the programmer. For.
the IBM 70k, the sub-routines of matrix inversion, multiplication,

- addition, -subtraction and scalar multiplication require about 400
commands ; the main program that calls on these sub-routines requires
about 150 commands. - One major advantage of this step-by-step method
over the mode superposition method is in the relatively emall amount
of storage used and iz the ease with wh:!.ch it can be programmed.

Timing

The length of time required to determine the response of a
structure also will depend on the specific camputer empleyed. For the
IE{ 704 the linear scceleration methnd. as presented in Table III
requires approximately 0.0007 {n° + 16n)m + 0.0005 n3 seconds, where
n 1is the size of the system and m 3is the number of time increments.
For the same computer, the mode superposition method reguires
approximately 0.0004 (22 + 16n)m + 0.005 nd seconds. From the stand=
point of ccoputational time it is apparent that only for large systems
with short duration lomds does the step-by-siep method require less
time than the mode-superposition method.

EXAMPLE

An eight-story building was selected to illustrate the application
of the step-by-step procedure to a typical structure. The building is
camposed of both frames and shear walls. Its 8 by 8 lateral stiffness
matrix, which was developed by normal matrix methods, is given by

11819 (Symmetrical)

-6750 11730

615 <6726 11571 _

191 571 -6613 1145h

L 12?9 5122 79 6762 10925
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22 59 157 ha3 1168 4888 3045
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FIG.2 RESPONSE OF BUILDING SUBJECTED TO EARTHQUAKE LOADING



The mass of the struecture is lumped at elight levels and is given by

[M]: [2.76 2.76 2.76 2.73 2.69 2.69 2.69 E‘.53J

The ground acceleration of an earthquake was used as the loeding for the
structure. The damping coefficienta o and g were set equal to 0.50/
sec. and 0.001 seec. The time Iincrement used was 0.0125 sec.

The displacements, moments, and shears for the first eight seccnds
of the response were determined at each story; however, cnly a few of
these response data are showm in Fig. 2.

As & check on the step-by-step method, the same structure was
solved using the mode-superposition methed. The solution of the charac-
teristic value problem yilelds the following values for the frequencies
of the structure:

22C.

[w] =[2-89% 13.65 30.79 18.66 65.27 78.78 89.03 95.22) T/

The dampil:l? assoclated with each mode is determined from the following
equation: L)

Ni & K, o+ AS (10)

The resulis cbiained Ly the mode-superposition methed and the step-by-
step method differed at any time by less than two percent. Within the
accuracy of plotting, Fig. 2 illustrates the resultes for both methods.

COMCLUSIONS

The step=by=step method as presented in this paper provides =
systematic procedure to determine the dynamic response of discrete
mass systems subjected to arbitrary loading. The formulation of the
gtep-by-step equations in matrix form allows the response of a system
to be determined by & repeated seguence of matrix operations. Further-
more, the iteration on each time inecrement, which is required by other
procedures, is eliminated by an initial matrix inversion.
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