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SUMMARY

Several general purpose camputer gystems with multiple processors operating concurrently are currently
vemg commereially produced. Most of the present generation of finite element software was not designed
ter take advantage of this new technelogy, The porpose of this paper is to present the advantages of a new
architecture tor finite element programs which will operate efficiently on computer systems with any number
of processors. Also, the basic approach is effeciive for muliprocessor computers with local or shared MeEmory.,

The new computer program srchilectnre is based on an initial application of a simple algorithm which
automatically subdivides the complete finite element domain inio a number of subdomains equal o the
nomber of available processors, The resulting dara stracture requires 2 miniomum of communication betwesn
processors during the formation of basic element matriees, reduction of subdemain matrices and the postpro-
ccssing of element results. The assembly and solution of the giobal system of subdomains van be aceanplished
directly or iteratively, and new concurscnt solution algorithms can be introduced.

Several of the ideas presented here have boen tested on various types of computer. The new program
architecture indicates that 1t is possible to obtain speed-up times of over 90 per cent of the maxirium
theoretical values if appropriate numerical metheds arc employed.

»

L
INTRODUCTION

The use of computer systems with muttiple processors for the solction of finite element domaing
was first suggested in 1976." However, it is only within the past few years that commercial
multiprocessor compufcrs have become available, The present authors have worked on the
awtomatic snbdomain algorithm,* concurrent algorithms for dynamic analysis,® concurrent iterative
solution methods® and direct concurrent selution algorithms.” The purpose of this paper is to
present the besic method in a niore general context and to emphasize that the automatic subdomain
approach has significant adventages when extended to noolinear problems in all areas of comput-
ational mechanies.

Fvolution of computer hardware

The majority of existing finite element analysis programs are based on sequential processing
and compurter hardware which existed over 20 years ago. At that time the central processing unit
(CPL) and random access memory (RAM) were much more expensive than the other components
of the computer system, and computer operating systems were therefore designed to achieve
maximum utilization of the CPL and RAM. This was sccomplished by allowing several programs
to be executed at the same time, with memory being shared. Since the amount of RAM on these
computers was limited, a large amount of data transfer was required between RAM and secomdary
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disc storage. As the data transfer in and out of RAM was relatively slow, the CPU could serve
several programs without being overloaded.

Within the past 10 years, with the introduction of superminicomputers. this multi-user type of
computer architecture has been carried to the extreme. Most of these multi-user systems automati-
cally move data in and out of RAM (this is called paging). It is very common for the performance
of these systems to degrade seriously if two or more finite element analyses are being conducted
at the same time. In fact, the ‘wall clock time’ for many finite element analyses on modern multi-
user systems is greater than if the same finite element model is run on an inexpensive, single-user
microcomputer.

The CPU and RAM for microcomputers have now become very inexpensive compared with
other components. For example, the CPU, 640 kbytes of RAM and a floating-point processor will
cost about $300 for an IBM PC class of microcomputer. In addition, the basic floating-point
arithmetic speed of a single-processor microcomputer is between a tenth and a third of the speed
of the CPU on an expensive multi-user computer system, so the idea of sharing one CPU between
several users is now an obsolete concept.

Evelution of finile elemnent soffware

The developiment of finite element softwzre ducing the past 25 vears has boen based on the
assumption that only CPU iy avajlable, so programs werz developed to operate sequentially.
Inherent in the design of most existing finite ¢lement programs are data structures end numerical
algorithms which are based on sequential processing. It is possible, within cach exccution phase
of existing programs, to modify the algorithms to take advantage of multiprocessing, However, if
the concurrent computational ability of these new compuiers is (o be fully utilized, a completely
new approach must be introduced in the basic organizational siracture of finite element programs.
In the selection of a new program structure w2 musi bear in mind that the data structure and the
numerical techniques used must be general with respect to the type of clements and mesh. Also,
they must be efficient Tor both dynamic and nonlingar problems. If these objectives are achicved,
the same basic approach may be taken for nonstructural types of problems in computational
mechanics.

The general method presented in this paper is significantly different rom the sequential approach
used®™n existing programs. It consists in sabdividing the finite element domain into the same
number of subdomains {substructures) as there are available processors, N, (Or, if a limited
number of processors are available the total number of subdomains must be an approximate
multiple of N,). The subdomzins should be selected such that the computational effort s approxi-
mately equal for each subdomain. It the finite element model contains onty one type of element,
a subdivision which contains an approximately squal number of elements in each subdomain may
be a logicel basis for an automatic subdivision algorithm.

Some finite element program developers believe that the FORTRAN compilers for multipro-
cessor complters will be able to subdivide the computational effort between the different processors
without having to change the basic architecture of the program. This appreach docs not recognize
that new numerical algorithms are required which can be executed concurrently. Others have
worked on improving aigorithms for specific solution phases for the traditional sequential finite
element program.® The subdomain approach requires a completely new program architecture if
the potential of this new computer hardware is to be fully exploited.

Jusiification of the subdomain approach

For static linear problems with few load conditions, the total solution time on a sequential
computer is the sum of the time required to process efement information and the time required
to solve the global equilibrium equations. The computational time required to form clement
stitfnasses, assemblc the global stiffness and calculale element stresses is directly proportional o
the number of elements, The computational time needed to solve the global equilibriumn equations
is proportional 1o the number of equations times ihe “average’ band-width squared.
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For most two-dimensional problems the execution time, on a sequential computer, for the
solution of equations is less than 50 per cent of the total computational effort. Therefore, if we
use only concurrent processing for the solution of equations we will not reduce the overall
computation time by more than 50 per cent. For this class of problem it is apparent that we
must perform concurrent computing at the element level if a significant reduction in computer
time is to be achieved.

For a two-dimensional NxN mesh the total number of elements is N2, and total number of
equations is (NV+1)?, with a band-width proportional to N+1. Therefore, the ratio of the solution
time to the time required to form element stiffnesses is proportional to N2. For three-dimensional
problems. with NXNxN elements, the number of equations to be solved is (N+1)3, with a band-
width of (N+1)2. Or, the ratio of the solution time to the time required to form element stiffnesses
is proportional to N*. Hence, large problems in three dimensions are dominated by the solution
of the equation phase if direct solution methods are employed. Because of this fundamental
difference between two- and three-dimensional problems, many researchers in numerical analysis
are re-evaluating iterative methods for the solution phase of three-dimensional problems since
iteration within each subdomain can be clearly executed concurrently.*

I Bingar dyvnamic response analysis, in which element stresses are evalualed as a function of
time, the evaluation of element stresses may take up most of the computational effort. The use
of cancurrent processing would produce an increase in speed directly proportional to the number
of processors. For nonlinear static or dynamic analysis, where the element stiffuesses and stresses
must be computed at each load or timestep, the use of concurrent computing at the slement level
will be verv effective.

In addition, the new program structure can be used o solve other types of field problem in
mechanics, such as fluid flow or heat wansfer. Also, the automatic subdomain approach may bhe
used in the classical numerical method of finite differences to improve performance on multipro-
Cess0r compuier systems,

It should be emphasized that the use of the subdoman architecture does not require existing
programs for finite element analysis to be completely rewritten. The existing program maodules
for pre- and postprocessing, the formation of element matrices and the calculation of stresses can
be directly incorporated into the rew subdomain architecture. Our experience has indicated that
the required program development for the automatic creation of subdomains, the reduction of
subdomairs and the solution of the global dowmain requiras fewer than 1500 FORTRAN statements.

®
BASIC PROGRAM ARCHITECTURE

It is very important that a new finite element program has an architeciure which will operaie
effectively on computers with any number of processors. Presen: supercompuicrs such as the

CRAY have one to four Processors; wheraas, the hypereube design may have several hundred.
In addition, some of the hardware is designed on the assumdtion that each processor has its own
memary, and cther compuiers share the same memory with all the procsesors. The subdomain
approach has the advantage of being equaliy effective on all existing computers which have
multiprocessors,

The subdomain approach requires the finite element model 1o be subdivided into the same
number of subdemains as the number of processors, Ny, which are available on the compuer
system. In order fo ebtain maximnm efficiency it is essential that all processors are assigned equal
computatioral elfort, Also, for local memoery processors it is very important that there is a
mirnimum level of data cormmunication between processors.

Figure 1 ilustrates the concurrent solution of a finite element model on a multiprocessor
computer system. After the model is subdivided into &, domains, all elemznt and subdomain
calenlations are completed withont the necd for mnrprocegsor communication. In a computer
system: with local memory, only the node coordinates, loads and element properties associated
with each subdomain need to be stored, so these basic data do not need to be duplicated in the
memaory of the other processors. Also, the basic data are unccupied during the stress racovery
phase
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NONLINEAR ANALYSIS

AUTOMATIC CREATION OF SUBDOMAINS

The geometry of a finite element model can be numerically defined by a list of element numbers
and the node numbers associated with cach element. These data can be stored in two integer
arrays. The MP array is the mumber of elements in length in which the integer MP(i) is the location
in the MN array of the last node nunber assomated with the ith element. Therelore, the node
numbers associated with the ith element are stored at locations MN|[MP{i—T)+1] t MN[MP({)],
where MP({(l) is defined as equal 1o zero. This basic data structure allows for a mixture ﬁ:ti one-,
two- and three-dimensional elements, cach with a different number of nodes.

1n order for the automatic subdomain algorithm to operate at increased efficiency it is necessary
to create additioral acrays. The NP array is the number of ncdes in length in which NP{j) is the
[ocation in the NN array of the last element number associated with the jfth node. Therefore, the
nmumbers for the elemenis atiached to the jth joint are siored in locations NN[NP(G—1)—1] to

NN[(NP{/)], where NP{0)] is defined as zero. The data structures for these arrays are iilustrated
in Figure 2. The data in these basic arrays are not changed during the execution of the algorithm.

Dyring the execution of the automatic subdomain algorithm, three additional integer arrays are
creatttl and modified. The NW array iz equal in length to the number of nodes and containg the
number of elements attached to each node. As elements are removed from the system the numbers
in the NW array are reduced. The array NF contains the number of active node numbers. (An
active node is ong in which some of the elements have been removed.) When all elermnsnts have
been removed from 4 node, the node number is removed from the NF array, The ME array is
equal in length to the number of clements, and contains the clement rumbers in the sequence in
which they are removed from the system,

A summary of the algorithm for the automatic creation of subdomains is given in Table L It
should be noted that all arrays can be retained in hléll-‘:pﬁﬁd memory during rhe execution of the
algorithm. Also, the algorithm is very fast since a minimum of array scarching is required during
exeontion,
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Table [. Summary of the automatic subdomain algorithm

A.  NUMERICAL DEFINITION OF FINITE ELEMENT MODEL
Element-node connectivity
MN array containing node numbers and the MP element pointer array

B.  INITIAL CALCULATION OF NODE DATA
Node-element connectivity
NN array containing element numbers and the NP node pointer array

C. DEFINITION OF WORKING ARRAYS
NW array containing the number of elements connected to each node
NF array containing the active node number
ME array containing element numbers in order produced

D.  ALGORITHM TQ PRODUCE SUBDOMAINS OF L. ELEMENTS EACH

. Zero NF array and start at node which has a minimum number of elements.
. Remove all elements attached to node and update ME, NF and NW arrays.
. After L elements are removed, return to Step 1.

. Eliminate nodes with zero elements and compact NF array.

. Return io Step 2 and use node NF(1) as next node.

n B L B =

DIRECT SOLUTION ALGORITHM

In thas paper a concurrent direct solution method of finite element systems is summarized, One
of the main reasons for restricting our discussion to noniterative methods is that they are casily
extended to dynamic response analysis, using either mode superposition or direct step-by-step
integration. Further research is required in iterative methods in concurrent computation before
they become as general and &g robust as the direct solvers.

The set of equilibrinm equations for & substructure or a complete structure may be wrilten in
the form

AX — R 1)

where A is the NEQXNEQ symmetrical matrix, X is the matrix of the node unknowns and B is
the matrix of node Ioads. It is important to note that it is not necessary to know boundary loads
in order to condénse the internal degrees of freedom for a subdomain. Before presenting the hasic
subdomain red®tion algorithm, we consider the basic solation algorithm for a complete system.
The first is the factorization of A:

A=LU or A=LDLT (2)
in which the jth column of U is evaluated from:
i=1
Uy=a,— 2 Laly, =2 NEQ, i=1, j-1 (3)
L]

and the jth row of L is given by
L =UydD,, j=2, NEQ., i=1,] L)

The diagonal terms Uy and Dy, are identical since L, is normalized to unity, Within 2 computer
program the terms Ag, U, and Ly can be stored in the same location; i is not necessary to store
Lrizquatian (1) can be written as

LDY = B (3)
where

Y=LTX (&)
Therefore, the forward redoction algorithm can be written as

I3

i—1 :
Y_; = {B,, - z L;kyk}f!]}&

Foa] El

and the equation for back-substitution is
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NEQ .
X, =Y,— > LyXi i=NEQ, 1 (8)
k=il
Also, within a computer program it is possible to store the terms X,, Y, and B; at the same location.
As described in detail in Reference 7, these equations can be modified for profile storage and
substructure reduction. Equations (3), (4) and (7) can be written in the form

kh
U; = A, — 2 Ly Uy, j=2,NEQ, i=1, NEQ ©)
k=kz
L, = U/D,, j=2,NEQ, i=1,LEQ (10)
kh
Y, = (Bj— D L.-kYk)/Dm i=1,LEQ (11)
k=kz
ki
B = — > LyY, i=LEQ,NEQ (12)
k=kz

where &z is the first nonzero tenm in colurnn §, and k# is the minimum of i—1 and LEQ. The
vector B! represents the loads which are transferred to the subdomain bouwndary due fo the
elimination of the interior unknowns of the subdomain. The reduced stiffness is antomatically
developed in the last NEQ—LEQ locations. Also, partial back-substitution is possible after the
boundary unknowns X o+ 10 Xyeo have been evaluzied by the global splution of the complete
system. Equation (8) can be written as

WEQ

X, =Y.~ 2 L.X. i=LEQ,1 (13)

k=i+l
Reference 7 contains a FORTRAN listing of the direct solution algorithm which has the subdomain
reduction option. It is very important to note that all ihree phases (factorization, forward-reduction
and back-substitution) Tequire vector operations, and that the inner do loops have been replaced
with subroutine calls. If each processor has a vector processor, the subdomain operations can be
made very eificient.

#
' SUBDOMAIN REDUCTION

The automatic subdomain algorithm presented is capable of subdividing any two- or three-
dimensional finite element model into the same number of domains as there are zvailable pro-
cessors. For N4, the two-dimensional, 64-clement mesh shown in Figure 3(a) would be subdiv-
ided into the four subdomains. This example also illustrates that the well-known nested dissection
algorithm is a special case of the automatic subdomain algorithn,

The global equilibrium equations for the 64 element mesh are shown in Figure 3(v). As with
traditional substructure analysis, it is possible o express the basic unknowns within the subdomain
in terms of the unknowns on the boundary of the domair and thus to form « reduced stiffpess
with respect to boundary unknowns, The number of numerical operations and the required storage
can be minimized within ihe subdomsin by use of the profile-front method.” The boundary
unknowns are the last equations to be numbered, as shown in Figure 3{b). Therefore, after the
reduction of LEQ equations the reduced stitfness matrix, K§”*, and the boundary loads, F{"™, are
produced concurrently within each domain. It is important to note that the profile method of data
storage allows the triangularization phase of solution 1o utilize vector processors during the
reduction of the suhdomain.

GLOBAL SOLUTION OF SYSTEM OF SUBDOMAINS

After all subdomains are reduced the global equations can be assembled by the application of the
direct stiffaess approach:
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Fi = EF( (15)
Hence, the global equilibrium eguations have the form
KiU, =F} (16)

In multiprocessors with local storage the basic matrices can be assembled directly if the columns of
the K" matrix are distributed to the different processors before the summation and the addition
of the subdomain arrays are conducted concurrently,

K""“--.‘ Kf-u
I
Ugs
-
iy
Kntnp\A\
{a) FINITE ELEMENT MODEL (b} TYPICAL SUBDOMAIN DATA STORAGE
Ka K:I.lq‘ _l-l-:l. 1 -.F:l. 1
KE Kn\q g F'-m
K;' Kﬂ-ﬂ Lipy = F'a
A SYMMETRIC Ko Kas (TE°] Fa
K Ug Fa
L. 4L ol L .

fc) EQUILIBRIUM EQUATIONS — TOTAL FIMITE ELEMENT SYSTEM

Figure 3.

The global system of equations with respect to the subdomain boundary unknowns can be solved
concurrently with a minor modification of the profile equation solver previously presented. The
basic topology of the global stiffness matrix is shown in Figure 4. For this example every fourth
column is assigned to be reduced by one processor. An examination of equation (%) indicates that
after column # is reduced all U; columns greater than n can be reduced down to the row n
concurrently in any order. Therefore, for large band-width problems it is possible to utilize all the
processors very effectively,

With shared memory no communication is necessary, but in multiprocessors with local memory
it is necessary to send the column to all other processors after it is completely reduced. In addition,
it 15 necessary to retain a copy of Dy in the local memory of all processors. The existence of a
nonzero term on the diagonal is all the information that is required to let each processor know
which terms U, can be calculated,

The direct application of equations (7) and (8) will produce the global displacements U, It is
then possible to distribute the subdomain boundary displacements to each processor for the
execution of equation (13) in order to evaluate the displacements within ¢ach subdomain.

It is clear that the automatic subdomain and solution algorithms presented here will operate on
either shared memory or local memory multiprocessors. Since the local memory processors require
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additional time for passing data, it appears that the shared memory approach is the most general.
However, the autornatic subdomain approach, ss presenied here, reguires all terms in the stiffoess
and load mairices 1o be stared in real memory. For very large problems this may not be possible
because of address limitations of the computer. If shared storage is a limitation factor, then
the local storage approach within each processor may be advantageous. For computers which
automatically page storage, the use of multiprocessors appears o be totally ineffective. If the basic
data cannot be retained in real memory, the algorithm can be modified so as 1o create a multilevel
subdomain metkod in which all data are moved in large blocks between resl and Ibw-speed nass
storage. The rotal number of subdomaios would then be a multiple of N,.

.
LINEAR DYNAMIC ANALYSIS

The avtomatic subdomain and soluticn algorithm, which has been presented in detail for static
analysis, is easily extended to dynamic znalvsis of targs finite element systems without & significant

Table I1. Summary of muldpreccssor dynamic analysis by divect superpositions of Ritz veetors

A, DYNAMIC EQUILIBRIUM EQUATIONS Mz o+ Cyv o+ Ku = E(s)e(n)
B. INITIAL CALCUIATIONS
1. Triangnlarize stiffnass matrix K = L'DL
2. Solve for static response Ku=171
C. GENERATE RITZ VECTORS ¥V, V.. . ... ¥,
LV,
1. Solve for X; KX ~Mun
2, Use modified Gram=Schmidi orthogonalization
bwice with respect to all previously caloulated
vectors and normalized resulls 1o ViIiMY =1
w = ey T ‘l"g

3. Remove new Ritz vector from siatic veetar where ¢; = ¥;T M U,
4, Evaloale error, stop or repeat

D. MAKE VECTORS STIFFNESS ORTHOGONAL -
OPTIONAL [K* — ] Y = D
1. Selve NN sigenvalue problem where K = VIK VY
2, Calenlate orthogonal Ritz vectors H=VY
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reduction of efficiency.? The basic approach is to use load-independent Ritz vectors to reduce the
size of the system.” The latest form of this algorithm is summarized in Table II. As in static
analysis, nearly all phases of the method can be carried out concurrently on multiple processors.
In addition, after the modal response is evaluated the time-dependent displacements and element
stresses can be calculated concurrently within each subdomain.

This approach is fundamentally different to the multiprocessor Lanczos eigenvalue method.
In the eigenvalue approach the complete stiffness matrix is required to be duplicated within the
local memory of each processor. A different shift is used within each processor, and the eigenvalues
are calculated in groups near the shifts. It is clear that this method is limited to problems where
the complete stiffness matrix for the finite element system can be contained in the local memory
of each processor. In addition, it has been shown that the load-dependent vectors can be generated
with less numerical effort and are always more accurate than if the exact eigenvectors are used.®

NONLINEAR ANALYSIS

A nonlinear anlaysis of a finite element system often requires 10 to 100 times as much computation
as a static linear analysis. In the most stable nonlinear solution algorithms, the load is applied
incrementally and iteration is carried out within the load or limestep in arder to obtain equilibrium.

In some implicit methods a direct solution of equations is not required at each load or time
increment. [n this approach the number of numerical aperations required is directly proportional
to the number of elemenis, so the automatic subdomain appreach will tend to divide the total
computational effort equally between the multiple processors.

Other methods of nonlinear analysis require the formulation and direct solution of the 2uilis-
rium equations for each increment. For this approach the methods presented in this paper for the
concurrent focmulation and solution of static problems on multiple processors can be used directly,
as indieated in Figure 1. With shared storage zll the basic data must be retained in real storage
for maximum efficiency. For moltiprocessor compmters with local storage a small amount of
information is duplicated within each processor, and the basic automatic subdomain appraach
requires a minimum level of communication between processors.

> NUMERICAL EXAMPLES

A large number of numerical examples were run on = hypercube multiprocessor cOmpuier using
the basic numerical methods summarized in this paper. {For mose details see References 2-5.)
The results of a typical plate bendiug problem are summarized in Figure 5. The speed-up i defined
as the ratio of th2 computer time required to solve the problem using Ny, processors o the
computer time required using one processor. In general, the results indicate that the approach is
mare efficient for larger prodlems. It is apparent that for very small problems the use of a large
number of processors may be counter-productive. Recent expetience of solving this prablem on
a shared-memory computer indicates that speed-up ratios of over Y0 per cent can be achieved.
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CONCLUSIONS

The authors have obtained a considerable amount of direct and indirect experience during the
past few years on the use of multiprocessor computer systems for the solution of finite element
problems using various numerical algorithms. As a result of this work we have come to the

fo
1.

L3

Howing general conclusions;

The automatic subdomain algorithm can be used to divide the total computational work equally
between all the processors on a multiprocessor computer system. The basic approach tends to
minimize communication requirements between processors. Also, the method is effective for
static, dynamic and nonlinear problems in all areas of computational mechanics.

. The development of ‘smart’ compilers for multiprocessor computers will speed up individual

program modules of existing programs in computational mechanics. However, if the maximum
use is to be made of the hardware, a new program architecture is required so that all phases
of the analysis can be executed concurrently.

. The Gaussian elimination method, with the basic matrices stored in profile form, is a very

effective approach 1o the concurrent reduction of the basic equations for all subdomains. The
global system of equations with respect to the subdomain boundaties can be solved directly if
profile storage is used, Each N, th column is assigned to each processor, and the triangularization
is carmicd out concurrently.

. Tteration solution methods can alse be used effectively with the automatic subdomain approach

at both the subdomain and the global levels. This approach appears to have the best potential
for the solution of thres-dimensional problems, The basic disadvantage of the iterative approach
is that it cannot be directly extended to dynamic mode superposition analysis,

. Multiprocessor eomputer systems with shared memory appear to offer the most potential for

the solution of problems in computational mechanics since the problem of data iransfer between
the local memory of the different processors is eliminated. The use of multiprocessors on
comprater systems which automatically page memory should be avoided.

The existence of multiprocessor computer systems is a practical reality for both micro- and
supercomputer systems. The incremental cost for additional processors and memory is small, and
the potential increase in performance is large. The cffective use of this new technology is a
chﬂ%éngt to researchers in numerical analvsts and computational mechamcs.

]

T

P A

=8

N T e

REFERENCES

. E. L. Wilson, "Special numerical and ¢omputer techniques for finite element analysis’, in Formugfadion and Compui-
ationgi Algorithms i Finje Flemear Anafysis, MIT Press, Cambricdge, MA, 1576, pp. 2-25.

.. H Farhat and E. L. Wilson, ‘Solution of finite element sysfems on concurrent processing compufers’, Eng.
Compaters, 2. 157-165 {1987),

. €. H. Farhat and E. L. Wilson, ‘Maodal superposition dynasic analysis on copewrent multiproesssors’, Eag. Compa-
tetions, {1987).

(. H. Farhat and E. L. Wilson, "Concurrent iteraiive solution of large finite element systems’, Commimen, gopf. aumer.
methods, , 315=-326 {1987},

. €. H. Farhat, ‘Muoitiprocessors in computational mechanics’, PhD. Dissevtation, Department of Civil Engineering,
Universily of California at Berkeley, 1986, .

. R. Fulton, "The impact of parallel computing on finite element compulations’, in Reliabitity of Methods for Englncering
Analysis, Pineridge Press, Swansea, 1986, pp. 179-196.

. E. L. Wilson and H. FL. Lovey, "Selution or reduction of equilibriun equations’, Adv. fng. Sufiware, 1(1), (1978).

M. L. Hoit and E. L. Wilson, *An equation numbering algorithin based on minimmun Cron: criteria’, Comgiifers Struc.,
16{1-4), 225-239 (1983).

. E. L. Wilsan, M. W. Yean and J. M. Dickens, "Dynamic analysis by direct superposition of Riz yeetors', Earthgunke
eng. steuct. dyn., 10, 813 823 (15982},

. E. P. Bayo and E. L. Wilsan, "Use of Ritz veetors in wave propagation and foundation responsc’, Earthiuake sug.
siemct. dym., 12, 499505 {1984).



