
 

 

7. 

BOUNDARY CONDITIONS AND  

GENERAL CONSTRAINTS 

The Specification of Known Joint Displacements 

Reduces the Number of Equations to be Solved  

7.1 INTRODUCTION 

The fundamentals of structural analysis and mechanics as applied to the linear 

static analysis have been summarized in the first several chapters of this book. 

However, additional computational and modeling techniques used to solve 

special problems remain to be presented. 

It has been established that the displacement method, where the joint 

displacements and rotations are the unknowns, generates a system of joint 

equilibrium equations. Both statically determinate and statically indeterminate 

structures are solved by the displacement method. The global stiffness matrix is 

the sum of element stiffness matrices and can be formed with respect to all 

possible joint displacement degrees of freedom. The minimum number of 

supports required for a stable system is that which will prevent rigid body 

movement of the structure.  

There are several reasons that the general displacement method is not used for 

non-computer calculations. For most problems, the solution of a large number of 

equations is required. Also, to avoid numerical problems, a large number of 
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significant figures is required if both bending and axial deformations are included 

in the analysis of frame structures. One notes that the two traditional 

displacement analysis methods, moment distribution and slope-deflection, 

involve only moments and rotations. When those traditional displacement 

methods are extended to more general frame-type structures, it is necessary to set 

the axial deformations to zero; which, in modern terminology, is the application 

of a displacement constraint. 

It has been shown that for the development of finite element stiffness matrices it 

is necessary to introduce approximate displacement shape functions. Based on 

the same shape functions, it is possible to develop constraints between different 

coarse and fine finite element meshes in two and three dimensions.  

7.2 DISPLACEMENT BOUNDARY CONDITIONS 

One of the significant advantages of the displacement method is the ease in 

specifying displacement boundary conditions. Consider the following set of N 

equilibrium equations formed including the displacements associated with the 

supports: 
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If a particular displacement nu is known and is specified, the corresponding load, 

or reaction nR , is unknown. Hence, the N-1 equilibrium equations are written as: 
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   or,  RuK =   (7.2) 

This simple modification to the stiffness and load matrices is applied to each 

specified displacement and the nth row and column are discarded. For a fixed 

support, where the displacement is zero, the load vectors are not modified. Those 

modifications, resulting from applied displacements, can be applied at the 
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element level, before formation of the global stiffness matrix. After all 

displacements have been calculated, the load associated with the specified 

displacements can be calculated from the discarded equilibrium equation. This 

same basic approach can be used where the displacements are specified as a 

function of time. 

It should be apparent that it is not possible to specify both nu  and nR  at the 

same degree of freedom. One can design a structure so that a specified 

displacement will result from a specified load; therefore, this is a structural 

design problem and not a problem in structural analysis. 

7.3 NUMERICAL PROBLEMS IN STRUCTURAL ANALYSIS 

Many engineers use large values for element properties when modeling rigid 

parts of structures. This can cause large errors in the results for static and 

dynamic analysis problems. In the case of nonlinear analysis the practice of using 

unrealistically large numbers can cause slow convergence and result in long 

computer execution times. Therefore, the purpose of this section is to explain the 

physical reasons for those problems and to present some guidelines for the 

selection of properties for stiff elements. 

Elements with infinite stiffness and rigid supports do not exist in real structures. 

We can only say that an element, or a support, is stiff relative to other parts of the 

structure. In many cases, the relative stiffness of what we call a rigid element is 

10 to 1,000 times the stiffness of the adjacent flexible elements. The use of these 

realistic values will not normally cause numerical problems in the analysis of the 

computer model of a structure. However, if a relative value of 1020 is used, a 

solution may not be possible, because of what is known as truncation errors. 

To illustrate truncation errors, consider the simple three-element model shown in 

Figure 7.1. 

u1 , F1 u2 , F2

k K k

 

Figure 7.1 Example to Illustrate Numerical Problems 
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The equilibrium equations for this simple structure, written in matrix form, are 

the following: 
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Most structural analysis programs are written in double precision, and the 

stiffness terms have approximately 15 significant figures and can be in the range 

of 10-308 to 10+308. Therefore, if the stiff element has a stiffness of K=1020 k, the 

term K+k is truncated to K and the equilibrium equations are singular and cannot 

be solved. If K=1012 k, approximately 12 significant figures are lost and the 

solution is accurate to approximately three significant figures. The equation 

solvers used in the well-written structural analysis programs can sometimes 

detect this type of error and warn the user. However, for large systems, this type 

of error can be cumulative and is not always detected by the computer program. 

This problem can be avoided by using realistic stiffness values, or by using 

constraints in the place of very stiff elements. This is one reason the rigid floor 

diaphragm constraint is often used in the solution of multistory buildings, 

because the in-plane stiffness of the floor system is often several orders-of-

magnitude greater than the bending stiffness of the columns that connect the stiff 

floor slabs. 

In nonlinear dynamic analysis, iteration is often used to satisfy equilibrium at the 

end of each time step. If elements have a large stiffness change during the time 

step, the solution can oscillate about the converged solution for alternate 

iterations. To avoid this convergence problem, it is necessary to select realistic 

stiffness values; or displacement constraints can be activated and deactivated 

during the incremental solution.  

7.4 GENERAL THEORY ASSOCIATED WITH CONSTRAINTS 

Structural engineers have used displacement constraints in structural analysis for 

over a century. For example, the two dimensional portal frame shown in Figure 

7.2 has six displacement degrees of freedom (DOF). Therefore, six independent 

joint loads are possible.  
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Figure 7.2 Utilization of Displacement Constraints in Portal Frame Analysis 

Using hand calculations and the slope-deflection method, it is common practice 

to neglect axial deformations within the three members of the portal frame. In 

mathematical notation, those three constraint equations can be written as: 
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As a result of these constraints, the following load assumptions must be made: 
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Note the similarities between the displacement compatibility conditions, 

Equation (7.4), and the force equilibrium requirements, Equation (7.5).  

From this simple example, the following general comments can be made: 
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1. The application of a constraint equation must be justified by a physical 

understanding of structural behavior. In this case, we can say that the axial 

deformations are small compared to lateral deformation 1xu . Also, the axial 

deformations in the columns do not cause significant bending forces within 

the other members of the structure. In addition, vertical loads cannot be 

applied that can cause horizontal displacements in the real structure. 

2. In general, for each application of a constraint equation, one global joint 

displacement degree of freedom is eliminated. 

3. The force association with each axial deformation, which has been set to 

zero, cannot be calculated directly. Because the axial deformation has been 

set to zero, a computer program based on a displacement method will 

produce a zero axial force. This approximation can have serious 

consequences if “automatic code design checks” are conducted by the 

computer program.  

4. The constraint equations should be applied at the element stiffness level 

before addition of element stiffness matrices to the global joint equilibrium 

equations. 

7.5 FLOOR DIAPHRAGM CONSTRAINTS 

Many automated structural analysis computer programs use master-slave 

constraint options. However, in many cases the user’s manual does not clearly 

define the mathematical constraint equations that are used within the program. To 

illustrate the various forms that this constraint option can take, let us consider the 

floor diaphragm system shown in Figure 7.3. 

The diaphragm, or the physical floor system in the real structure, can have any 

number of columns and beams connected to it. At the end of each member, at the 

diaphragm level, six degrees of freedom exist for a three-dimensional structure 

before introduction of constraints.  
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Figure 7.3 Rigid Diaphragm Approximation 

Field measurements have verified for a large number of building-type structures 

that the in-plane deformations in the floor systems are small compared to the 

inter-story horizontal displacements. Hence, it has become common practice to 

assume that the in-plane motion of all points on the floor diaphragm move as a 

rigid body. Therefore, the in-plane displacements of the diaphragm can be 

expressed in terms of two displacements, )(m
xu and 

)(m

yu , and a rotation about the 

z-axis, 
)(m

zu  . 

In the case of static loading, the location of the master node (m) can be at any 

location on the diaphragm. However, for the case of dynamic earthquake loading, 

the master node must be located at the center of mass of each floor if a diagonal 

mass matrix is to be used. The SAP2000 program automatically calculates the 

location of the master node based on the center of mass of the constraint nodes.  

As a result of this rigid diaphragm approximation, the following compatibility 

equations must be satisfied for joints attached to the diaphragm: 

A. Typical Joint “I” on Floor System in x-y Plane
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The rotation )(i
zu  may or may not be constrained to the rigid body rotation of the 

diaphragm. This decision must be based on how the beams and columns are 

physically connected to the floor system. In the case of a steel structure, the 

structural designer may specify that the floor slab is released in the vicinity of the 

joint, which would allow the joint to rotate independently of the diaphragm. On 

the other hand, in the case of a poured-in-place concrete structure, where 

columns and beams are an intricate part of the floor system, the following 

additional constraint must be satisfied: 

)()( m
z

i
z uu  =  (7.7) 

Or in matrix form, the displacement transformation is: 































 −

=


















)(

)(

)(

)(

)(

)(

)(

)(

)(

00

10

01

m
z

m
y

m
x

i
z

i

i

i
z

i
y

i
x

u

u

u

u

x

y

u

u

u

 or, )()()( mii
uTu =  (7.8) 

If displacements are eliminated by the application of constraint equations, the 

loads associated with those displacements must also be transformed to the master 

node. From simple statics the loads applied at joint “i” can be moved to the 

master node “m” by the following equilibrium equations: 
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Or in matrix form. the load transformation is: 
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Again, one notes that the force transformation matrix is the transpose of the 

displacement transformation matrix.  

The total load applied at the master point will be the sum of the contributions 

from all slave nodes. Or:  

)()()()( ii

i

mim T

RTRR  ==  (7.11) 

Now, consider a vertical column connected between joint i at level m and joint j 

at level m+1, as shown in Figure 7.4. Note that the location of the master node 

can be different for each level.  

Figure 7.4 Column Connected Between Horizontal Diaphragms 
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From Equation (7.6) it is apparent that the displacement transformation matrix 

for the column is given by 































































































−

−

=













































+








+

+





















)1(

)(

)(

)(

)(

)1(

)1(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

01000000000000

00100000000000

00010000000000

00001000000000

0000100000000

0000010000000

00000000100000

00000000010000

00000000001000

00000000000100

0000000000010

0000000000001

m
z

i
z

i
y

i
x

i
z

m
y

m
x

m
z

i
z

i
y

i
x

i
z

m
y

m
x

j

j

i

i

j

z

j

y

j

x

j
z

j
y

j
x

i
z

i
y

i
x

i
z

i
y

i
x

u

u

u

u

u

u

u

u

u

u

u

u

u

u

x

y

x

y

u

u

u

u

u

u

u

u

u

u

u

u

(7.12) 

Or in symbolic form: 

Bud =  (7.13) 

The displacement transformation matrix is 12 by 14 if the z-rotations are retained 

as independent displacements. The new 14 by 14 stiffness matrix, with respect to 

the master and slave reference systems at both levels, is given by: 

BkBK
T=  (7.14) 

where k  is the initial 12 by 12 global stiffness matrix for the column. It should 

be pointed out that the formal matrix multiplication, suggested by Equation 

(7.14), need not be conducted within a computer program. Sparse matrix 

operations reduce the numerical effort significantly.  

In the case of a beam at a diaphragm level, the axial deformation will be set to 

zero by the constraints, and the resulting 8 by 8 stiffness matrix will be in 
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reference to six rotations and two vertical displacements. Therefore, the force in 

the beam element will be zero. 

7.6 RIGID CONSTRAINTS 

There are several different types of constraints that require displacements at one 

point to be related to displacements at another point. The most general form of a 

three-dimensional rigid constraint is illustrated in Figure 7.5.  

Figure 7.5 Rigid Body Constraints 

The points i,  j and m are all points on a body that can be considered to move 

with six rigid body displacements. Any point in space can be considered as the 

master node for static loading; however, for dynamic analysis, the master node 

must be at the center of the mass if we wish to restrict our formulation to a 

diagonal mass matrix.  

It is apparent from the fundamental equations of geometry that all points 

connected to the rigid body are related to the displacements of the master node by 

the following equations:  
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The constraint equations for point j are identical to matrix Equation (7.15) with i 

replaced with j. 

7.7 USE OF CONSTRAINTS IN BEAM-SHELL ANALYSIS 

An example that illustrates the practical use of a three-dimensional rigid 

constraint is the beam-slab system shown in Figure 7.6. 

Figure 7.6 Connection of Beam to Slab by Constraints 

It is realistic to use four-node shell elements to model the slab and two-node 

beam elements to model the beam. Both elements have six DOF per node. 

However, there are no common nodes in space to directly connect the two 

element types. Therefore, it is logical to connect node i, at the mid-surface of the 

slab, with point j at the neutral axis of the beam with a rigid constraint. If these 

constraints are enforced at the shell nodes along the axis of the beam, it will 

allow the natural interaction of the two element types. In addition to reducing the 

i

j
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number of unknowns, it avoids the problem of selecting an effective width of the 

slab. Also, it allows non-prismatic beams, where the neutral axis in not on a 

straight line, to be realistically modeled. To maintain compatibility between the 

beam and slab, it may be necessary to apply the rigid-body constraint at several 

sections along the axis of the beam.  

7.8 USE OF CONSTRAINTS IN SHEAR WALL ANALYSIS 

Another area in which the use of constraints has proven useful is in the analysis 

of perforated concrete shear walls. Consider the two-dimensional shear wall 

shown in Figure 7.7a. 

Figure 7.7 Beam-Column Model of Shear Wall   

Many engineers believe that the creation of a two-dimensional finite element 

mesh, as shown in Figure 7.7b, is the best approach to evaluate the displacements 

and stresses within the shear wall. In the author’s opinion, this approach may not 

be the best for the following reasons:  

A. SHEAR WALL WITH LINE LOADS B. FINITE ELEMENT MODEL

C. DEFINE BEAMS & COLUMNS D. BEAM-COLUMN MODEL

COLUMNS

RIGID ZONES

BEAMS
3 DOF PER

RIGID ZONE
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1. As previously illustrated, the use of four-node plane elements for frame 

analysis does not accurately model linear bending. The approximation of 

constant shear stress within each element makes it very difficult to capture 

the parabolic shear distribution that exists in the classical frame element. 

2. If a very fine mesh is used, the linear finite element solution will produce 

near infinite stresses at the corners of the openings. Because the basic 

philosophy of reinforced concrete design is based on cracked sections, it is 

not possible to use the finite element results directly for design. 

3. Using common sense and a physical insight into the behavior of the 

structure, it is possible to use frame elements to create a very simple model 

that accurately captures the behavior of the structure and directly produces 

results that can be used to design the concrete elements. 

Figure 7.7c illustrates how the shear wall is reduced to a frame element model 

interconnected with rigid zones. The columns are first defined by identifying 

regions of the structure that have two stress-free vertical sides. The beams are 

then defined by identifying areas that have two stress-free horizontal sides. The 

length of each beam and column should be increased by approximately 20 

percent of the depth of the element to allow for deformations near the ends of the 

elements. The remaining areas of the structure are assumed to be rigid in-plane. 

Based on these physical approximations, the simple model, shown in Figure 7.7d, 

is produced. Each rigid area will have three DOF, two translations and two 

rotations. The end of the frame elements must be constrained to move with these 

rigid areas. Therefore, this model has only 12 DOF. Additional nodes within the 

frame elements may be required to accurately model the lateral loading. 

7.9 USE OF CONSTRAINTS FOR MESH TRANSITIONS 

It is a fact that rectangular elements are more accurate than arbitrary quadrilateral 

elements. Also, regular eight-node prisms are more accurate than hexahedral 

elements of arbitrary shape. Therefore, there is a motivation to use constraints to 

connect a fine mesh with coarse mesh.  
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Figure 7.8 Use of Constraints to Merge Different Finite Element Meshes 

To illustrate the use of constraints to merge different sized elements, consider the 

three-dimensional finite element shown in Figure 7.8. 

The easiest method to generate the mesh shown in Figure 7.8 is to use completely 

different numbering systems to generate the coarse and fine mesh areas of the 

finite element model. The two sections can then be connected by displacement 

constraints. To satisfy compatibility, it is necessary that the fine mesh be 

constrained to the coarse mesh. Therefore, the shape functions of the surface of 

the coarse mesh must be used to evaluate the displacements at the nodes of the 

fine mesh. In this case, the 36 DOF of the12 fine mesh nodes, numbers 21 to 32, 

are related to the displacements at nodes 13 to 16 by 36 equations of the 

following form: 

1616151514141313 uNuNuNuNuc +++=  (7.16) 

The equation is applied to the x, y and z displacements at the 12 points. The 

bilinear shape functions, Ni, are evaluated at the natural coordinates of the 12 

points. For example, the natural coordinates for node 25 are  r = 0 and  s = 1/3. It 

is apparent that these displacement transformations can automatically be formed 
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and applied within a computer program. This approach has been used in 

computer programs that use adaptive mesh refinement. 

7.10 LAGRANGE MULTIPLIERS AND PENALTY FUNCTIONS 

In rigid-body mechanics the classical approach to specify displacement 

constraints is by using Lagrange multipliers. A more recent approach used in 

computational mechanics is to use penalty functions, within the variational 

formulation of the problem, to enforce constraint conditions.  

The penalty method can be explained using a simple physical approach in which 

the constraint is enforced using a semi-rigid element. To illustrate this approach 

Equation (7.17) can be written as: 

uBcc eeuuNuNuNuN ==−+++   or,  01616151514141313  (7.17) 

An equation of this form can be written for all degrees of freedom at the 

constraint node. The displacement transformation matrix cB  is a 1 by 5 matrix 

for each constraint displacement. For the constraint equation to be satisfied, the 

error e  must be zero, or a very small number compared to the other 

displacements in the equation. This can be accomplished by assigning a large 

stiffness ck , or penalty term, to the error in the constraint equation. Hence, the 

force associated with the constraint is ekf cc =  and the 5 by 5 constraint element 

stiffness matrix can be written as: 

cc
T
cc k BBk =  (7.18) 

As the value of ck  is increased, the error is reduced and the strain energy within 

the constraint element will approach zero. Therefore, the energy associated with 

the constraint element can be added directly to the potential energy of the system 

before application of the principle of minimum potential energy. 

It should be pointed out that the penalty term should not be too large, or 

numerical problems may be introduced, as illustrated in Figure 7.1. This can be 

avoided if the penalty term is three to four orders-of-magnitude greater than the 

stiffness of the adjacent elements. 
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The Lagrange multiplier approach adds the constraint equations to the potential 

energy. Or: 
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where j  is defined as the Lagrange multiplier for the constraint j. After the 

potential energy is minimized with respect to each displacement and each 

Lagrange multiplier, the following set of equations is produced: 
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The number of equations to be solved is increased by “J” additional equations. 

Equation (7.20) has both equilibrium equations and equations of geometry. Also, 

the symmetric matrix is not positive-definite. Therefore, pivoting may be 

required during the solution process. Hence, the penalty method is the preferable 

approach. 

7.11 SUMMARY 

Traditionally, constraints were used  to reduce the number of equations to be 

solved. At the present time, however, the high speed of the current generation of 

inexpensive personal computers allows for the double-precision solution of 

several thousand equations within a few minutes. Hence, constraints should be 

used to avoid numerical problems and to create a realistic model that accurately 

predicts the behavior of the real structure. 

Constraint equations are necessary to connect different element types together. In 

addition, they can be very useful in areas of mesh transitions and adaptive mesh 

refinement. 

Care must be exercised to avoid numerical problems if penalty functions are used 

to enforce constraints. The use of Lagrange multipliers avoids numerical 

problems; however, additional numerical effort is required to solve the mixed set 

of equations. 



7-18 STATIC AND DYNAMIC ANALYSIS 

 

 


