
 

 

6. 

INCOMPATIBLE ELEMENTS 
When Incompatible Elements Were Introduced in 1971, 

Mathematics Professor Strang of MIT Stated 
 “In Berkeley, Two Wrongs Make a Right” 

 

6.1 INTRODUCTION 

{ XE "Irons, Bruce M." }{ XE "Patch Test" }{ XE "Strang, G." }{ XE 
"Displacement Compatibility" }In the early years of the development of the 
Finite Element Method, researchers in the fields of Mathematics, Structural 
Engineering and Structural Mechanics considered that displacement 
compatibility between finite elements was absolutely mandatory. Therefore, 
when the author first introduced incompatible displacements into rectangular 
isoparametric finite elements at a conference in 1971 [1], the method was 
received with great skepticism by fellow researchers. The results for both 
displacements and stresses for rectangular elements were very close to the results 
from the nine-node isoparametric element. The two theoretical crimes committed 
were displacement compatibility was violated and the method was not verified 
with examples using non-rectangular elements [2]. As a consequence of these 
crimes, Bruce Irons introduced the patch test restriction and the displacement 
compatible requirement was eliminated [3]. 

{ XE "Taylor, R. L." }{ XE "Jacobian Matrix" }In 1976 a method was presented 
by Taylor to correct the incompatible displacement mode; he proposed using a 
constant Jacobian during the integration of the incompatible modes so that the 



6-2 STATIC AND DYNAMIC ANALYSIS 
 

incompatibility elements passed the patch test [4]. However, the results produced 
by the non-rectangular isoparametric element were not impressive.  

{ XE "B Bar Method" }{ XE "Rafai, M.S." }{ XE "Incompatible Displacements" 
}{ XE "Simo, J. C." }In 1986 Simo and Rafai introduced the B bar method to 
correct the strains produced by incompatible displacements, achieving excellent 
results for non-rectangular elements [5]. Since that time the use of incompatible 
lower-order elements has reduced the need for reduced integration and the use of 
very high-order isoparametric elements. Many of these new elements, based on 
corrected incompatible displacement modes, are summarized in this book. 

6.2 ELEMENTS WITH SHEAR LOCKING 

{ XE "Shear Locking" }The simple four-node isoparametric element does not 
produce accurate results for many applications. To illustrate this deficiency, 
consider the rectangular element, shown in Figure 6.1, subjected to pure bending 

loading. 

Figure 6.1 Basic Equilibrium Errors in Four-Node Plane Element 
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{ XE "Poisson's Ratio" }It is apparent that the compatible four-point rectangular 
element produces significant errors in both displacements and stresses when 
subjected to simple stress gradients. Shear-locking is the term used to describe 
the development of shear stresses when the element is subjected to pure bending. 
In addition to the shear stress problem, an error in the vertical stress is developed 
because of the Poisson’s ratio effect. The exact displacements, which allow the 
element to satisfy internal equilibrium, are of the form: 
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These displacements allow the shear strain to be zero at all points within the 
element. Also, the neutral axis must move vertically, thereby reducing the 
vertical stresses to zero. 

6.3 ADDITION OF INCOMPATIBLE MODES 

The motivation for the addition of incompatible displacement modes, of 
magnitude jα , is to cancel the stresses associated with the error terms defined in 
Equation (6.1). Or, in terms of the r-s natural reference system, the new 
displacement shape functions for the four-node isoparametric element are: 

)1()1(

)1()1(

2
4

2
3

4

1

2
2

2
1

4

1

sruNu

sruNu

xy
i

iy

xi
i

ix

−α+−α+=

−α+−α+=

∑

∑

=

=  (6.2) 

Hence, the strain-displacement equation for an incompatible element can be 
written as: 
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If we let [ ]xyyx γεε=Td  and [ ]xyyx τσσ=Tf , the strain energy within 

the incompatible element is given as: 
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To pass the patch test, the strain energy associated with the incompatible modes 
must be zero for a state of constant element stress. Hence, for a state of constant 
stress, the following equation must be satisfied: 

∫ =α 0
2
1 dVI

T Bf   or  ∫ = 0dVIB  (6.5) 

{ XE "Correction Matrix" }This can be satisfied if we add a constant correction 
matrix ICB  to the IB  matrix and to form a new strain-
displacement, ICII BBB += , so that the following equation is satisfied: 

∫ =+ 0)( dVICI BB  or,   ∫ =+ 0ICI BB VdV  (6.6) 

The volume of the element is V. Hence, the correction matrix can be calculated 
from: 

∫−= dV
V IIC BB 1  (6.7) 

This is a very general approach and can be used to add any number of 
incompatible displacement modes, or strain patterns, to all types of isoparametric 
elements. The same numerical integration formula should be used to evaluate 
Equation (6.7) as is used in calculating the element stiffness matrix. 

6.4 FORMATION OF ELEMENT STIFFNESS MATRIX 

In the minimization of the potential energy the forces associated with the 
incompatible displacement modes α  are zero. Therefore, the element 
equilibrium equations are given by: 
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The individual sub-matrices within the element stiffness matrix are given by: 
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{ XE "Static Condensation" }Using static condensation [6] the incompatible 
displacement modes are eliminated before assembly of the element stiffness 
matrices. Or: 

ukf CC =  (6.10) 

Therefore, the element stiffness matrix is given by: 

IC
1
IICICCC kkkkk −−=  (6.11) 

Symbolically, Equation (6.11) is correct; however, it should be pointed out that 
matrix inversion and matrix multiplication are not used in the static condensation 
algorithm as presented in Section 4.5 for the modification of frame element 
stiffness because of moment end releases. 

6.5 INCOMPATIBLE TWO-DIMENSIONAL ELEMENTS 

The addition of the incompatible shape functions, )1()1( 22 rs −−  and , to xu  and 
yu  displacement approximations is very effective for plane rectangular elements. 

Therefore, for quadrilaterals of arbitrary shape, the following displacement 
approximation has been found to be effective: 
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The incompatible shape functions are:  
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The four incompatible modes increase computational time required to form the 
element stiffness matrix; however, the improvement in accuracy is worth the 
additional calculations.  

6.6 EXAMPLE USING INCOMPATIBLE DISPLACEMENTS 

{ XE "Incompatible Displacements" }To illustrate the accuracy of both 
compatible and incompatible elements in two dimensions, the cantilever beam 
shown in Figure 6.2 is analyzed assuming a moment and concentrated forces 
acting at the end of the cantilever. 

Figure 6.2 Beam Modeled with Distorted Mesh 

An element shape sensitivity study can be accomplished using different distortion 
factors. Table 6.1 presents a summary of the results. 
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Table 6.1 Results of Analysis of Cantilever Beam 

TIP MOMENT LOADING TIP SHEAR LOADING 

Mesh 
Distortion 
Factor “a” 

Number of 
Incompatible 

Modes 
Normalized 

Tip 
Displacement 

Normalized 
Maximum 
Stress At 
Support 

Normalized Tip 
Displacement 

Normalized 
Maximum 
Stress At 
Support 

EXACT - 1.000 1.000 1.000 1.000 
0 0 0.280 0.299 0.280 0.149 
0 4 1.000 1.000 0.932 0.750 
1 4 0.658 0.638 0.706 0.600 
2 4 0.608 0.657 0.688 0.614 

It is apparent that the classical four-node, rectangular, compatible isoparametric 
element, without incompatible modes, produces very poor results. The use of this 
classical element can produce significant errors that may have serious practical 
engineering consequences. One notes that the stresses may be less than 20 
percent of the correct value. 

The addition of four parabolic shape functions produces the exact values of 
displacements and stresses for rectangular elements resulting from constant 
moment loading. However, because of tip shear loading, the maximum stress has 
a 25 percent error. In addition, as the element is distorted, the accuracy of both 
displacements and stresses is reduced by 30 to 40 percent. 

It should be noted that all elements pass the patch test and will converge to the 
exact solution, as the mesh is refined. It appears that the plane quadrilateral 
elements, with eight incompatible displacement modes, will converge faster than 
the lower-order elements.  

6.7 THREE-DIMENSIONAL INCOMPATIBLE ELEMENTS  

The classical eight-node, hexahedral displacement compatible element has the 
same shear-locking problem as the classical, four-node plane element. The 
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addition of nine incompatible shape functions has proven effective for three 
dimensional, eight-node, hexahedral elements. Or:  
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The three additional incompatible shape functions are: 
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The 2 by 2 by 2 integration formula previously presented for three-dimensional 
isoparametric elements has been found to be effective for the eight-node 
hexahedral element with nine additional incompatible modes. 

6.8 SUMMARY 

Because of the serious problem associated with shear-locking, the classical 
compatible four-node quadrilateral and eight-node hexahedral elements should 
not be used to simulate the behavior of real structures. It has been demonstrated 
that the addition of incompatible displacement modes, corrected to pass the patch 
test, significantly enhances the performance of quadrilateral and hexahedral 
isoparametric elements. 

The nine-node quadrilateral and the 27-node hexahedral elements are accurate 
and can be improved by adding corrected incompatible modes. For example, 
cubic modes can be added to the nine-node plane element in which the exact 
results can be calculated, for tip shear loading, using only one element to model a 
cantilever beam [7]. 
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