
 

 

4. 

ONE-DIMENSIONAL ELEMENTS 
Before 1960, the Field of Structural Analysis  
Was Restricted to One-Dimensional Elements 

4.1 INTRODUCTION  

{ XE "Beams" }{ XE "Frame Element" }{ XE "Non-Prismatic Element" }Most 
structural engineers have the impression that two- and three-dimensional finite 
elements are very sophisticated and accurate compared to the one-dimensional 
frame element. After more than forty years of research in the development of 
practical structural analysis programs, it is my opinion that the non-prismatic 
frame element, used in an arbitrary location in three-dimensional space, is 
definitely the most complex and useful element compared to all other types of 
finite elements. 

{ XE "Arbitrary Frame Element" }The fundamental theory for frame elements has 
existed for over a century. However, only during the past forty years have we had 
the ability to solve large three-dimensional systems of frame elements. In 
addition, we now routinely include torsion and shear deformations in all 
elements. In addition, the finite size of connections is now considered in most 
analyses. Since the introduction of computer analysis, the use of non-prismatic 
sections and arbitrary member loading in three-dimensions has made the 
programming of the element very tedious. In addition, the post processing of the 
frame forces to satisfy the many different building codes is complex and not 
clearly defined. 
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4.2 ANALYSIS OF AN AXIAL ELEMENT 

{ XE "Axial Element" }To illustrate the application of the basic equations 
presented in the previous chapter, the 2 x 2 element stiffness matrix will be 
developed for the truss element shown in Figure 4.1.  

Figure 4.1 Tapered Bar Example 

The axial displacements at position s can be expressed in terms of the axial 
displacements at points I and J at the ends of the element. Or: 
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The stress-strain relationship is ε=σ E . Therefore, the element stiffness matrix 
is: 
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Because the strain is constant, integration over the element produces the volume 
LA a  where aA  is the average cross-sectional area of the element. If the cross-

sectional area is constant, the stiffness matrix is exact and the force and 
displacement methods will produce identical results. However, if the area is not 
constant, significant errors may be introduced by the formal application of the 
displacement method.  

To illustrate the errors involved in the application of the displacement method, let 
us assume the following properties: 

E=1,000 ksi 2in0.6=aA  80=L in. 0=Iu  kips10=JR  

{ XE "Assumed Displacement" }Hence, the displacement at point J is given by: 
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{ XE "Assumed Stress" }From equation (4.2), the corresponding constant strain 
is 0.0016666. Therefore, the constant axial stress is given by:  

ksi667.1=ε=σ E  (4.5) 

However, if a force approach is used for the solution of this problem, significant 
and more accurate results are obtained. From simple statics, the axial stress 
distribution is: 
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From the force method, the displacement at the end of the member is given by: 
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Note that the end displacement obtained by the displacement method is 
approximately 17 percent less than the exact displacement produced by the force 
method.  
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Of greater significance, however, is the comparison of the axial stress 
distribution summarized in Figure 4.2, using both the force and displacement 
methods of analysis. 

Figure 4.2 Comparison of Stresses for Force and Displacement Method 

At the end of the tampered rod, the displacement method produces only 33 
percent of the maximum stress of 5.0 ksi. Of course, if a fine mesh is used, the 
results will be closer. Also, if higher order elements are used, with interior points, 
the displacement method results can be improved significantly. Nevertheless, this 
example clearly illustrates that the force approach should be used to predict the 
behavior of one-dimensional elements. 

4.3 TWO-DIMENSIONAL FRAME ELEMENT 

{ XE "Rigid Body Displacements" }A non-prismatic frame element with axial, 
bending and shearing deformations will be developed to illustrate the power of 
the force method. The displacement method has the ability to calculate a stiffness 
matrix of any element directly in terms of all displacement degrees-of-freedom 
associated with the elements; and the element automatically includes the rigid 
body displacement modes of the element. The force method only allows for the 
development of the element flexibility matrix in terms of displacements relative 
to a stable support system. 
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The general frame element is composed of any number of non-prismatic frame 
segments. Each segment can have independent axial, shear or bending properties. 
Therefore, at the ends of the element, rigid bending segments are possible, with 
or without shearing and axial deformations. Hence, it is possible to approximate 
the behavior of the finite connection area. A typical frame member is shown in 
Figure 4.3.  

Figure 4.3 Arbitrary, Two-Dimensional Frame Element  

The relative displacements are the axial displacement ∆ , vertical displacement 
v , and the end rotation θ . The corresponding loads are the axial load P , vertical 
load V , and the end moment M . At a typical cross-section at location s , the 
force-deformation relationship is: 
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All cross-sectional properties, including the effective shear area sA , can vary 
within each segment of the frame element. 
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{ XE "Section Forces" }{ XE "Section Properties" }The section forces within a 
typical segment at location s  can be expressed directly from statics in terms of 
the arbitrary end forces R . Or: 
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The 3 x 3 flexibility matrix as defined by the force method is calculated from: 
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It is of interest to note that because of the discontinuity of the properties of the 
segments, each segment produces a separate 3 by 3 flexibility matrix. Therefore, 
Equation (4.10) can be written in the following form: 
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{ XE "Direct Flexibility Method" }Equation (4.11) can be termed the direct 
flexibility method, because the segment flexibility terms are directly added. It 
should be pointed out that if any cross-sectional stiffness properties are infinite, 
as defined in Equation (4.9), the contribution to the flexibility at the end of the 
element is zero.  

The C and P matrices contain a significant number of zero terms. Therefore, the 
element flexibility matrix for a straight member contains only four independent 
terms, which are illustrated by: 
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It can easily be shown that the individual flexibility terms are given by the 
following simple equations: 
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{ XE "Frame Element:Properties" }For frame segments with constant or linear 
variation of element properties, those equations can be evaluated in closed form. 
For the case of more complex segment properties, numerical integration may be 
required. For a prismatic element without rigid end offsets, those flexibility 
constants are well-known and reduce to: 
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For rectangular cross-sections, the shear area is AA s 6
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One can easily consider loading within the segment by calculating the additional 
relative displacements at the end of the element using simple virtual work 
methods. For this more general case, the total relative displacement will be of the 
following form: 
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The displacements caused by span loading are designated by Lv . Equation (4.15) 
can be rewritten in terms of the element stiffness as: 

LL r-vv-vr KKK ==  (4.16) 

The element stiffness is the inverse of the element flexibility, -1FK = , and the 
fixed-end forces caused by span loading are LL vr K= . Within a computer 
program, those equations are evaluated numerically for each element; therefore, 
it is not necessary to develop the element stiffness in closed form. 

4.4 THREE-DIMENSIONAL FRAME ELEMENT 

{ XE "Shearing Deformations" }{ XE "Torsional Flexibility" }The development 
of the three-dimensional frame element stiffness is a simple extension of the 
equations presented for the two-dimensional element. Bending and shearing 
deformations can be included in the normal direction using the same equations. 
In addition, it is apparent that the uncoupled torsional flexibility is given by: 
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{ XE "Torsional Stiffness" }The torsional stiffness term, )()( sJsG , can be 
difficult to calculate for many cross-sections. The use of a finite element mesh 
may be necessary for complex sections. 
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An arbitrary, three-dimensional frame element is shown in Figure 4.4. Note that 
only the six forces at the J end are shown. The six relative displacements at node 
J have the same positive sign convention as the forces at node J. 

Figure 4.4 Member Forces in Local Reference Systems 

{ XE "Frame Element:Local Reference System" }The 6 by 6 stiffness matrix is 
formed in the local 1-2-3 coordinate system, as shown in Figure 4.4. The order of 
the forces and relative deformations are given by: 
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The bold terms indicate the shear and bending contributions in the 1-2 plane. For 
a curved member in three dimensions, the 6 by 6 k matrix may be full without 
the existence of any zero terms. Note that the 6 by 6 stiffness matrix formed in 
the local system does not have the six rigid body modes.  
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The forces acting at node I are not independent and can be expressed in terms of 
the forces acting at node J by the application of the basic equations of statics. 
Therefore: 
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The twelve forces at both ends of the beam can now be expressed in terms of the 
six forces at the J end of the beam by the following submatrix equations: 
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{ XE "Frame Element:Displacement Transformation" }Also, from the 
relationship between the equations of statics and compatibility, the following 
displacement transformation equation exists: 

JII dbd =   (4.21) 

Therefore, the 12 by 12 frame element stiffness, JIk , with respect to the local  
1-2-3 reference system, is:  

bkbk J
T

JI =   (4.22) 

Hence, the force-displacement equations in the local 1-2-3 system can be written 
as: 

JIJIJI ukf =   (4.23) 

To use the direct stiffness formulation, it is necessary to transform the local 
element stiffness into the global x-y-z reference system. The global 12 by 12 
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stiffness matrix must be formed with respect to the node forces shown in Figure 
4.5. All twelve node forces R  and twelve node displacements u  have the same 
sign convention. 
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Figure 4.5 Frame Member Forces in Absolute Reference System 

{ XE "Frame Element:Absolute Reference System" }The local displacements and 
forces can be expressed using the elementary direction cosine matrix given in 
Appendix A. Or: 
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Therefore, the final twelve transformation equations are in the following simple  
4 by 4 submatrix form: 
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The twelve global equilibrium equations in x-y-z reference system are now given 
by: 

LRKuR +=       (4.26) 

The frame element stiffness matrix is:  

TkTK JI
T=  (4.27) 

It can be shown that the six fixed-end forces Jr  caused by member loads, which 
are defined in the local 1-2-3 system, can be transformed to twelve global loads 
by: 

J
TT

L rbTR =       (4.28) 

It should be pointed out that within most efficient computer programs, formal 
matrix multiplication is not used to form the matrices. Programming methods are 
used to skip most multiplication by zero terms. 

4.5 MEMBER END-RELEASES 

{ XE "Frame Element:Member End Releases" }{ XE "Frame Element:Member 
Loading" }Including member loading in Equation (4.23), the twelve equilibrium 
equations in the local IJ reference system can be written as  

IJIJIJIJ rukf +=     or, without subscripts  rkuf +=  (4.29) 

If one end of the member has a hinge, or other type of release that causes the 
corresponding force to be equal to zero, Equation (4.29) requires modification. A 
typical equation is of the following form: 
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If we know a specific value of nf  is zero because of a release, the corresponding 
displacement nu  can be written as: 
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Therefore, by substitution of equation (4.31) into the other eleven equilibrium 
equations, the unknown nu can be eliminated and the corresponding row and 
column set to zero. Or: 

IJIJIJIJ rukf +=  (4.32) 

The terms 0== nn rf and the new stiffness and load terms are equal to: 
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{ XE "Static Condensation" }{ XE "Partial Gauss Elimination" }This procedure 
can be repeatedly applied to the element equilibrium equations for all releases. 
After the other displacements associated with the element have been found from 
a solution of the global equilibrium equations, the displacements associated with 
the releases can be calculated from Equation (4.31) in reverse order from the 
order in which the displacements were eliminated. The repeated application of 
these simple numerical equations is defined in Appendix C as static 
condensation or partial Gauss elimination. 

4.6 SUMMARY 

The force method should be used to develop the stiffness matrices for one-
dimensional elements where the internal section stress-resultants can be 
expressed, by satisfying equilibrium, in terms of the forces acting on the ends of 
the element. First, the flexibility matrix, with respect to a stable support system, 
is developed in the element local reference system. Second, this flexibility matrix 
is inverted to form the element stiffness matrix. Third, the local stiffness matrix 
is expanded to include the rigid-body displacements and is modified because of 



ONE DIMENSIONAL ELEMENTS 4-15 

end releases. Finally, the stiffness and load matrices are transformed into the 
global reference system. 

 


