
 

 

3. 

ENERGY AND WORK  
All External Work Supplied to a Real Structural 

System is Stored or Dissipated as Energy  

3.1 INTRODUCTION 

{ XE "Energy" }{ XE "Statically Indeterminate Structures" }{ XE "External 
Work" }A large number of energy methods have been presented during the last 
150 years for the analysis of both determinate and statically indeterminate 
structures. However, if all methods are formulated in matrix notation, it can be 
shown that only two fundamental methods exist. They are generally defined as 
the force and displacement methods. One can use minimum energy principles or 
methods of virtual-work to derive the general equations for linear structural 
analysis. Energy is defined as the ability to do work. Both have the units of 
force-distance. 

For many types of structural elements, however, there can be many advantages in 
using both force and displacement methods in approximating the stiffness 
properties of the element. For example, the classical non-prismatic beam element 
uses a force approach to define the forces at a typical cross-section within the 
beam; however, a displacement approximation, such as plane sections remain 
plane, is used to define the strain distribution over the cross-section. 

{ XE "Virtual Work" }In recent years, assumed-stress hybrid formulations have 
been used to produce element stiffness properties. In addition, assumed-stress 
distributions, virtual work methods and the least-square error approach have been 
used to calculate accurate stresses in displacement-based finite elements. 
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Therefore, no one method can be used to solve all problems in structural analysis. 
The only restriction on the computational techniques used is that the results must 
converge to the exact values as the elements become smaller. 

3.2 VIRTUAL AND REAL WORK 

The principles of virtual work are very simple and are clear statements of 
conservation of energy. The principles apply to structures that are in equilibrium 
in a real displaced position u when subjected to loading R . The corresponding 
real internal deformations and internal forces are d and f respectively. All terms 
are illustrated in Figures 3.1 and 3.2.  

Figure 3.1 Method of Virtual Forces 

{ XE "Infinitesimal Displacements" }The principle of virtual forces states (in my 
words) if a set of infinitesimal external forces, R , in equilibrium with a set of 
infinitesimal internal forces f that exist before the application of the real loads 
and displacements, the external virtual work is equal to the internal virtual work. 
Or, in terms of the notation defined previously: 

dfuR TT =  (3.1) 

If only one joint displacement iu  is to be calculated, only one external virtual 
load exists, 1=iR . For this case, the equation is the same as the unit load 
method. It is apparent for nonlinear analysis that the principle of virtual forces 
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cannot be used, because the linear relationship between R  and f  may not hold 
after the application of the real loads and displacements.  

{ XE "Virtual Displacements" }The principle of virtual displacements states (in 
my words) if a set of infinitesimal external displacements, u , consistent with a 
set of internal virtual displacements, d , and boundary conditions are applied 
after the application of the real loads and displacements, the external virtual 
work is equal to the internal virtual work. Or, in terms of matrix notation:  

fdRu TT =  (3.2) 

It is important to note that the principle of virtual displacements does apply to the 
solution of nonlinear systems because the virtual displacements are applied to 
real forces in the deformed structure. 

In the case of finite element analysis of continuous solids, the virtual work 
principles are applied at the level of stresses and strains; therefore, integration 
over the volume of the element is required to calculate the virtual work terms. 

For linear analysis, it is apparent that the real external work, or energy, is given 
by: 

uRRu TT
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==EW  (3.3) 

Figure 3.2 Method of Virtual Displacements 
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The real internal work, or strain energy, is given by: 

dffd TT

2
1

2
1

==IW  (3.4) 

3.3 POTENTIAL ENERGY AND KINETIC ENERGY 

{ XE "Energy:Kinetic Energy" }{ XE "Energy:Potential Energy" }One of the 
most fundamental forms of energy is the position of a mass within a gravitational 
field near the earth's surface. The gravitational potential energy gV is defined as 
the constant weight w  moved against a constant gravitational field of distance h . 
Or: 

  or        WhVmghV gg ==  (3.5)  

A mass that is moving with velocity v  has kinetic energy given by the following 
equation: 

  2

2
1 mvVk =  (3.6)  

One of the most common examples that illustrates the physical significance of 
both the potential and kinetic energy is the behavior of a pendulum shown in 
Figure 3.3. 

If the mass of the pendulum has an initial position of maxh , the kinetic energy is 
zero and the potential energy is Whmax . When h  equals zero, the potential 
energy is zero; therefore, from conservation of energy, the kinetic energy is: 

g
vW

WhVk 2

2

max ==      (3.7) 

Hence, the maximum horizontal velocity is:  

maxmax 2 hgv =      (3.8) 
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Figure 3.3 Oscillation of Pendulum 

It is important to note that the total energy in the oscillating system is always 
constant; therefore, the following energy equation, at any time t , must be 
satisfied: 

constant==+ max)()( hWtVtV kg      (3.9) 

{ XE "Energy:Energy Pump" }The physical behavior of the oscillating pendulum 
can be considered to be an energy pump, where there is an interchange between 
potential and kinetic energy. 

{ XE "Newton's Second Law" }The tangential force accelerating the mass is 
θsinW . From Newton's Second Law, the following nonlinear, differential 

equation of equilibrium can be written: 

 0sin0sin =θ+θ=θ+θ
L
g   or,   &&&& WmL      (3.10) 

For very small angles, θ≈θsin , the approximate linear differential equation is:  

0=θ+θ
L
g&&      (3.11) 
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Hence, the small displacement period of oscillation of a pendulum is:  

g
LT π= 2      (3.12) 

3.4  STRAIN ENERGY 

{ XE "Energy:Strain Energy" }The strain energy stored in an element "i" within a 
general structural system is the area under the stress-strain diagram integrated 
over the volume of the element. For linear systems, the stress-strain matrix )(iE , 
including initial thermal stresses )(i

tf , can be written in matrix form as: 

)()()()( i
t

iii fdEf +=      (3.13) 

The column matrices )()( ii df  and  are the stresses and strain respectively. 
Therefore, the strain energy within one element is given by:  

∫∫ += dVdVW i
t

iiiii
I

)()()()()()(

2
1 fddEd

TT      (3.14) 

Within each element, an approximation can be made on the displacements. Or: 

     and      ,  z
ii

zy
ii

yx
ii

x uuu uNuNuN )()()()()()( ===      (3.15) 

Hence, after the application of the strain-displacement equations, the element 
strains can be expressed in terms of nodal displacements. Or: 

 TTT BuduBd ))()()( (iiii == or             (3.16) 

The column matrix u contains all of the node, or joint, displacements of the 
complete structural system. In addition, it may contain displacement patterns 
within the element. When equation (3.16) is written in this form, it is apparent 
that the )(iB  matrix can be very large; however, it only has non-zero terms 
associated with the displacements at the nodes connected to nodes adjacent to the 
element. Therefore, the )(iB matrix is always formed and used in compacted form 
within a computer program, and an integer location array, (i)

aL , is formed for 
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each element that is used to relate the local node displacements )(iu to the global 
node displacements u . 

{ XE "Energy:Strain Energy" }After integration over the volume of the element, 
the strain energy, in terms of the global node displacements, can be written as: 

)()()(

2
1 iii

IW t
TT Fuuku +=  (3.17) 

Therefore, the element stiffness matrix is by definition: 

dViii ∫= )()()()( iT BEBk  (3.18) 

And the element thermal force matrix is: 

dViii ∫= )()()(
t

TfBF  (3.19) 

The total internal strain energy is the sum of the element strain energies. Or: 

 t
TT FuuKu +=

2
1

IW  (3.20) 

The global stiffness matrix K is the sum of the element stiffness matrices )(ik . 
Or: 

∑= )(ikK       (3.21) 

{ XE "Direct Stiffness Method" }The summation of element stiffness matrices to 
form the global stiffness matrix is termed the direct stiffness method. The global 
thermal load vector tF  is the sum of the element thermal load matrices: 

∑= )(t
tFFt  (3.22)   

3.5 EXTERNAL WORK  

{ XE "Energy:External Work" }{ XE "External Work" }The external work cW  
performed by a system of concentrated node, or joint, loads cF  is:  
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 ccW Fu T

2
1

=      (3.23) 

{ XE "Body Forces" }Within each element "i", the external work )(i
gW  performed 

by the body forces because of gravitational loads is: 

dVugugugmW zzzyyy
i

xx
i

x
i

g )(
2
1 )()()( ρ+ρ+= ∫      (3.24) 

Application of the displacement assumptions given by Equation (3.15), 
integration over the volume of the element, and summation over all elements 
produces the following equation for the energy because of body forces:  

ggW Fu T

2
1

=      (3.25) 

The external work j
sW performed because of element surface stresses (tractions) 

)( j
st , for a typical surface "j" is of the form:  

dSW j
s

(j)
s

j
s ∫= )()(

2
1 tBu

TT      (3.26) 

Application of the displacement assumptions given by Equation (3.15), 
integration over the surface of the element, and summation over all surface 
elements produces the following equation for the energy because of surface 
tractions:  

ssW Fu T

2
1

=      (3.27) 

Therefore, the total external work performed on any system of structural 
elements is: 

[ ]sgcEW FFFu T ++=
2
1      (3.28) 
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3.6 STATIONARY ENERGY PRINCIPLE 

{ XE "Energy:Stationary Energy" }It is a fact for linear systems that the internal 
strain energy must equal the external work performed on the structure. For a 
single degree-of-freedom system, we can use this principle to solve for the 
displacement. However, for a multi degree-of-freedom system, a different 
approach is required. The energy plots, shown in Figure 3.4, illustrate that a new 

energy function Ω  can be defined. 

Figure 3.4  Energy as a Function of a Typical Displacement  

{ XE "Energy:Minimum Potential Energy" }It is apparent that the solution at the 
point of minimum potential energy is where the internal energy equals the 
external energy. Therefore, the major advantage of the use of the potential energy 
function is that the solution must satisfy the following equation for all 
displacement degrees-of-freedom nu : 

0=
∂
Ω∂

nu
     (3.29) 

The energy function written in matrix form is: 

RuKuu TT −=Ω
2
1      (3.30) 
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Energy
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t
TT FuKuu +=

2
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[ ]sgcEW FFFuT ++=
2
1

EI WW 2−=Ω
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The resultant load vector R  associated with the four types of loading is: 

tsgc FFFFR −++=      (3.31) 

Application of Equation (3.29) to all displacements yields: 
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Therefore, the node equilibrium equation for all types of structural systems can 
be written as the following matrix equation: 

RuK =  (3.33) 

{ XE "Consistent Mass" }The only approximation involved in the development of 
this equation is the assumption of the displacement patterns within each element. 
If the same displacement approximation is used to calculate the kinetic energy, 
the resulting mass matrix is termed a consistent mass matrix. 

Another important fact concerning compatible displacement-based finite 
elements is that they converge from below, to the exact solution, as the mesh is 
refined. Therefore, the displacements and stresses tend to be lower than the exact 
values. From a practical structural engineering viewpoint, this can produce very 
dangerous results. To minimize this problem, the structural engineer must check 
statics and conduct parameter studies using different meshes. 
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3.7 THE FORCE METHOD 

{ XE "Force Method" }{ XE "Statically Indeterminate Structures" }The 
traditional method of cutting a statically indeterminate structure, applying 
redundant forces, and solving for the redundant forces by setting the relative 
displacements at the cuts to zero has been the most popular method of structural 
analysis, if hand calculations are used. The author has developed structural 
analysis programs based on both the force and displacement methods of analysis. 
At this point in time, there appears to be no compelling reason for using the force 
method within a computer program for solving large structural systems. In fact, 
programs based on the displacement approach are simple to program and, in 
general, require less computer time to execute. Another significant advantage of 
a displacement approach is that the method is easily extended to the dynamic 
response of structures. 

To develop the stiffness of one-dimensional elements, however, the force method 
should be used because the internal forces can be expressed exactly in terms of 
the forces at the two ends of the element. Therefore, the force method will be 
presented here for a single-element system. 

Neglecting thermal strains, the energy function can be written as: 

 uRdf TT −=Ω ∫ dV
2
1      (3.34) 

The internal forces can be expressed in terms of the node forces using the 
following equation: 

RPf =      (3.35) 

For linear material Cfd =  and the energy function can be written as: 

uRRFR TT −=Ω
2
1      (3.36) 

Where the element flexibility matrix is: 

dVCPPF T∫=  (3.37) 
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{ XE "Energy:Complementary Energy" }We can now minimize the 
complementary energy function by requiring that: 

0=
∂
Ω∂

nR
 (3.38) 

The node displacements can now be expressed in terms of node forces by: 

FRu =  (3.39) 

The element stiffness can now be numerically evaluated from: 

1−= FK  (3.40) 

The element stiffness can be used in the direct stiffness approach where the basic 
unknowns are the node displacements. One can also derive the element flexibility 
by applying the virtual force method.  

3.8 LAGRANGE’S EQUATION OF MOTION 

{ XE "Lagrange's Equations of Motion" }In the case of dynamic analysis of 
structures, the direct application of the well-known Lagrange’s equation of 
motion can be used to develop the dynamic equilibrium of a complex structural 
system[1]. Lagrange’s minimization equation, written in terms of the previously 
defined notation, is given by: 
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{ XE "Energy:Kinetic Energy" }The node point velocity is defined as nu& . The 
most general form for the kinetic energy )(i

kV  stored within a three-dimensional 
element i  of mass density ρ  is: 
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The same shape functions used to calculate the strain energy within the element 
allow the velocities within the element to be expressed in terms of the node point 
velocities. Or: 

     and      ,  z
ii

zy
ii

yx
ii

x uuu uNuNuN &&&&&& )()()()()()( ===      (3.43) 

Therefore, the velocity transformation equations can be written in the following 
form: 
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Using exact or numerical integration, it is now possible to write the total kinetic 
energy within a structure as: 

∑ ==
i

i
kk VV uMu T &&

2
1)(  (3.45) 

{ XE "Consistent Mass" }The total mass matrix M  is the sum of the element 
mass matrices )(iM . The element consistent mass matrices are calculated from: 

dViTi )()()( NmNM i ∫=  (3.46) 

where m is the 3 by 3 diagonal mass density matrix shown in Equation (3.42). 
Equation (3.46) is very general and can be used to develop the consistent mass 
matrix for any displacement-based finite element. The term “consistent” is used 
because the same shape functions are used to develop both the stiffness and mass 
matrices. 

{ XE "Dynamic Equilibrium Equations" }Direct application of Equation (3.41) 
will yield the dynamic equilibrium equations: 

RKuuM =+&&  (3.47) 

Later in the book the more general dynamic equilibrium equations with damping 
will be developed using a physical equilibrium approach. 
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3.9 CONSERVATION OF MOMENTUM 

{ XE "Momentum, Conservation" }The conservation of momentum is often 
presented as a fundamental principle of physics. However, it can be easily 
derived from the basic equilibrium equations. Consider the two rigid bodies 
shown in Figure 3.5. 

 

 

Figure 3.5 Conservation of Linear Momentum 

{ XE "Impact" }From Newton’s Second Law, the equal and opposite forces 
acting on the rigid bodies during impact will be:  

t
uuMuMF

δ
−

≈=
&&

&&  (3.48) 

If the duration of contact between the two bodies is tδ , the contact force can be 
approximated by a change in the velocity before and after impact. During 
contact, equilibrium must be satisfied in both the x and y directions. Therefore: 
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Momentum is defined as mass times the velocity of the mass and has the 
properties of a vector. From Equation (3.49), momentum has the direction of the 
velocity and its components can be plus or minus in reference to the x-y system. 
Or: 

yyyy

xxxx

uMuMuMuM

uMuMuMuM

22112211

22112211

&&&&

&&&&

+=+

+=+
 (3.50) 

In addition, the resultant momentum vector must be the same before and after 
impact. Or: 

22112211 uMuMuMuM &&&& +=+  (3.51) 

{ XE "Energy:Kinetic Energy" }It is apparent that three equations, given by 
Equations (3.50) and (3.51), do not have a unique solution because there are four 
unknowns. The following principle of conservation of kinetic energy must be 
enforced as an additional condition: 

2
22

2
11

2
22

2
11 uMuMuMuM &&&& +=+  (3.52) 

Consider a direct collision, with no energy dissipation, of a mass 1M  at a known 
velocity 1u&  with a mass of 2M  that is at rest. Conservation of momentum 
(equilibrium) and conservation of kinetic energy requires that:  
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 (3.53) 

After impact, the new velocities are: 
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If the two masses are equal, the velocity of the first is reduced to zero. If the first 
mass is less than the second mass, the first will bounce back and the large mass 
will move forward with a small velocity.  
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These simple equations can be extended to model the impact between different 
parts of a structural system. These equations also may apply to the closing of 
gaps between different elastic structures. 

3.10 SUMMARY 

Several energy methods have been presented that can be used to derive the basic 
equations used for the static and dynamic analysis of structures. The fundamental 
equations of structural analysis are equilibrium, force-deformation and 
compatibility. If the same sign convention is used for element and joint 
displacements and forces, the compatibility and equilibrium equations are 
directly related. If the joint equilibrium equations are written in the same order as 
the joint forces, the resulting stiffness and flexibility matrices will always be 
symmetrical. 

By assuming displacement shape functions within structural elements, consistent 
mass and stiffness matrices can be developed. In most cases, however, a physical 
mass lumping will not produce significant errors.  

In dynamic analysis, the independent time integration of the various components 
of energy, including energy dissipation, can be used to evaluate the accuracy of 
the solution. By comparing the strain energy stored in the structure resulting from 
a given load condition, one can modify and improve a structural design to 
minimize the energy absorbed by the structure 

After the structural model has been selected and the loading has been assumed, 
the structural analysis procedure can be automated. However, the selection of the 
structural model and the interpretation and verification of the results is the major 
responsibility of the professional structural engineer. 
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