
 

22. 

SEISMIC ANALYSIS USING 
DISPLACEMENT LOADING 

Direct use of Earthquake Ground Displacement in a 
Dynamic Analysis has Inherent Numerical Errors 

22.1 INTRODUCTION 

{ XE "Displacement Seismic Loading" }Most seismic structural analyses are 
based on the relative-displacements formulation where the base accelerations are 
used as the basic loading. Hence, experience with the direct use of absolute 
earthquake displacement loading acting at the base of the structure has been 
limited. Several new types of numerical errors associated with the use of absolute 
seismic displacement loading are identified. Those errors are inherent in all 
methods of dynamic analysis and are directly associated with the application of 
displacement loading. 

{ XE "Multi-Support Earthquake Motions" }It is possible for the majority of 
seismic analyses of structures to use the ground accelerations as the basic input, 
and the structural displacements produced are relative to the absolute ground 
displacements. In the case of multi-support input motions, it is necessary to 
formulate the problem in terms of the absolute ground motions at the different 
supports. However, the earthquake engineering profession has not established 
analysis guidelines to minimize the errors associated with that type of analysis. In 
this chapter, it will be shown that several new types of numerical errors can be 
easily introduced if absolute displacements are used as the basic loading. 
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{ XE "Bridge Analysis" }A typical long-span bridge structure is shown in Figure 
22.1. Different motions may exist at piers because of local site conditions or the 
time delay in the horizontal propagation of the earthquake motions in the rock. 
Therefore, several hundred different displacement records may be necessary to 
define the basic loading on the structure. 
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Figure 22.1 Long Bridge Structure With Multi-Support Input Displacements 

The engineer/analyst must be aware that displacement loading is significantly 
different from acceleration loading with respect to the following possible errors: 

1. The accelerations are linear functions within a time increment and an exact 
solution is normally used to solve the equilibrium equations. On the other 
hand, displacements derived from a linear acceleration function are a cubic 
function within each increment; therefore, a smaller time increment is 
required, or a higher order solution method must be used. 

2. { XE "Relative Displacements" }The spatial distribution of the loads in the 
relative displacement formulation is directly proportional to the mass; and 
the 90 percent modal mass-participation rule can be used to ensure that the 
results are accurate. In the case of base displacement input, however, the 
modal mass-participation factors cannot be used to estimate possible errors. 
For absolute displacement loading, concentrated forces are applied at the 
joints near the fixed base of the structure; therefore, a large number of high-
frequency modes are excited. Hence, alternative error estimations must be 
introduced and a very large number of modes may be required. 
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3. If the same damping is used for acceleration and displacement analyses, 
different results are obtained. This is because, for the same damping ratio, the 
effective damping associated with the higher frequency response is larger 
when displacement input is specified (see Table 19.1). Also, if mass 
proportional damping is used, additional damping is introduced because of 
the rigid body motion of the structure. 

The dynamic equilibrium equations for absolute seismic displacement type of 
loading are derived. The different types of errors that are commonly introduced 
are illustrated by an analysis of a simple shear-wall structure.  

22.2 EQUILIBRIUM EQUATIONS FOR DISPLACEMENT INPUT 

For a lumped-mass system, the dynamic equilibrium equations in terms of the 
unknown joint displacements su  within the superstructure and the specified 
absolute displacements bu  at the base joints can be written as: 
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The mass, damping and stiffness matrices associated with those displacements 
are specified by ijijij KCM and,, . Note that the forces bR  associated with the 
specified displacements are unknown and can be calculated after su  has been 
evaluated. 

Therefore, from Equation (22.1) the equilibrium equations for the superstructure 
only, with specified absolute displacements at the base joints, can be written as: 

bsbbsbsssssssss uCuKuKuCuM &&&& −−=++  (22.2) 

The damping loads bsbuC & can be numerically evaluated if the damping matrix is 
specified. However, the damping matrix is normally not defined. Therefore, those 
damping forces are normally neglected and the absolute equilibrium equations 
are written in the following form: 
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Each independent displacement record )(tu j is associated with the space function 

jf that is the negative value of the j th column in the stiffness matrix sbK . The 
total number of displacement records is J , each associated with a specific 
displacement degree of freedom. 

{ XE "Cubic Displacement Functions" }For the special case of a rigid-base 
structure, a group of joints at the base are subjected to the following three 
components of displacements, velocities and accelerations. 
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The exact relationship between displacements, velocities and acceleration is 
presented in Appendix J. 

The following change of variables is now possible: 

bxyzrs uIuu += ,   bxyzrs uIuu &&& += ,    and  bxyzrs uIuu &&&&&& +=  (22.5) 

The matrix ][ zyxxyz IIII =  and has three columns. The first column has unit 
values associated with the x displacements, the second column has unit values 
associated with the y displacements, and the third column has unit values 
associated with the z displacements. Therefore, the new displacements ru  are 
relative to the specified absolute base displacements. Equation (22.2) can now be 
rewritten in terms of the relative displacements and the specified base 
displacements: 

bsbxyzssbsbxyzssbxyzss

rssrssrss

uKIKuCICuIM
uKuCuM

][][ +−+−−
=++

&&&

&&&

                   (22.6) 

The forces bsbxyzss uKIK ][ + associated with the rigid body displacement of the 
structure are zero. Because the physical damping matrix is almost impossible to 
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define, the damping forces on the right-hand side of the equation are normally 
neglected. Hence, the three-dimensional dynamic equilibrium equations, in terms 
of relative displacements, are normally written in the following approximate 
form: 
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&&&&&&
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Note that the spatial distribution of the loading in the relative formulations is 
proportional to the directional masses.  

{ XE "Higher Mode Damping" }It must be noted that in the absolute 
displacement formulation, the stiffness matrix sbK  only has terms associated 
with the joints adjacent to the base nodes where the displacements are applied. 
Therefore, the only loads, jf , acting on the structure are point loads acting at a 
limited number of joints. This type of spatial distribution of point loads excites 
the high frequency modes of the system as the displacements are propagated 
within the structure. Hence, the physical behavior of the analysis model is very 
different if displacements are applied rather than if the mass times the 
acceleration is used as the loading. Therefore, the computer program user must 
understand that both approaches are approximate for non-zero damping. 

If the complete damping matrix is specified and the damping terms on the right-
hand sides of Equations (22.2 and 22.6) are included, an exact solution of both 
the absolute and relative formulations will produce identical solutions. 

22.3 USE OF PSEUDO-STATIC DISPLACEMENTS 

An alternate formulations, which is restricted to linear problems, is possible for 
multi support displacement loading that involves the use of pseudo-static 
displacements, which are defined as: 

 bbsbssp TuuKKu =−= −1  (22.8) 

The following change of variable is now introduced: 
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   and   , bsbsbps uTuuuTuuTuuuuu &&&&&&&&& +=+=+=+=  (22.9) 

The substitution of Equations (9) into Equation (2) yields the following set of 
equilibrium equations: 
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Hence Equation (22.10) can be written in the following simplified form: 

bssbss uTCCuTMuKuCuM sbssssss &&&&&& ][ +−−=++  (22.11) 

Equation (22.11) is exact if the damping terms are included on the right-hand 
side of the equation. However, these damping terms are normally not defined and 
are neglected. Hence, different results will be obtained from this formulation 
when compared to the absolute displacement formulation. The pseudo-static 
displacements cannot be extended to nonlinear problems; therefore, it cannot be 
considered a general method that can be used for all structural systems. 

22.4 SOLUTION OF DYNAMIC EQUILIBRIUM EQUATIONS 

The absolute displacement formulation, Equation (22.3), and the relative 
formulation, Equation (22.7), can be written in the following generic form: 
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Many different methods can be used to solve the dynamic equilibrium equations 
formulated in terms of absolute or relative displacements. The direct incremental 
numerical integration can be used to solve these equations. However, because of 
stability problems, large damping is often introduced in the higher modes, and 
only an approximate solution that is a function of the size of the time step used is 
obtained. The frequency domain solution using the Fast-Fourier-Transform, 
FFT, method also produces an approximate solution. Therefore, the errors 
identified in this paper exist for all methods of dynamic response analysis. Only 
the mode superposition method, for both linear acceleration and cubic 
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displacement loads, can be used to produce an exact solution. This approach is 
presented in Chapter 13. 

22.5 NUMERICAL EXAMPLE 

22.5.1 Example Structure 

The problems associated with the use of absolute displacement as direct input to 
a dynamic analysis problem can be illustrated by the numerical example shown 
in Figure 22.2. 
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Figure 22.2 Comparison of Relative and Absolute Displacement Seismic Analysis 

Neglecting shear and axial deformations, the model of the structure has forty 
displacement degrees of freedom, one translation and one rotation at each joint. 
The rotational masses at the nodes have been included; therefore, forty modes of 
vibration exist. Note that loads associated with the specification of the absolute 
base displacements are concentrated forces at the joint near the base of the 
structure. The exact periods of vibration for these simple cantilever structures are 
summarized in Table 22.1 in addition to the mass, static and dynamic load-
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participation factors. The derivations of mass-participation factor, static-
participation factors, and dynamic-participation factors are given in Chapter 13. 

Table 22.1 Periods and Participation Factors for Exact Eigenvectors 

Cumulative Sum of 
Load Participation Factors  

Base Displacement Loading 
(Percentage) Mode 

Number 
Period 

(Seconds) 

Cumulative Sum of 
Mass Participation 

Factors  
X-Direction    

(Percentage) Static Dynamic 

1 1.242178 62.645 0.007 0.000 
2 0.199956 81.823 0.093 0.000 
3 0.072474 88.312 0.315 0.000 
4 0.037783 91.565 0.725 0.002 
5 0.023480 93.484 1.350 0.007 
6 0.016227 94.730 2.200 0.023 
7 0.012045 95.592 3.267 0.060 
8 0.009414 96.215 4.529 0.130 
9 0.007652 96.679 5.952 0.251 
10 0.006414 97.032 7.492 0.437 
11 0.005513 97.304 9.099 0.699 
12 0.004838 97.515 10.718 1.042 
13 0.004324 97.678 12.290 1.459 
14 0.003925 97.804 13.753 1.930 
15 0.003615 97.898 15.046 2.421 
16 0.003374 97.966 16.114 2.886 
17 0.003189 98.011 16.913 3.276 
18 0.003052 98.038 17.429 3.551 
19 0.002958 98.050 17.683 3.695 
20 0.002902 98.053 17.752 3.736 
21 0.002066 99.988 99.181 98.387 

     
30 0.001538 99.999 99.922 99.832 

     

40 0.001493 100.000 100.000 100.000 
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It is important to note that only four modes are required to capture over 90 
percent of the mass in the x-direction. However, for displacement loading, 21 
eigenvectors are required to capture the static response of the structure and the 
kinetic energy under rigid-body motion. Note that the period of the 21th mode is 
0.002066 seconds, or approximately 50 cycles per second. However, this high 
frequency response is essential so that the absolute base displacement is 
accurately propagated into the structure. 

22.5.2 Earthquake Loading 

The acceleration, velocity and displacement base motions associated with an 
idealized near-field earthquake are shown in Figure 22.3. The motions have been 
selected to be simple and realistic so that this problem can be easily solved using 
different dynamic analysis programs. 
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Figure 22.3 Idealized Near-Field Earthquake Motions 

22.5.3 Effect of Time Step Size for Zero Damping 

{ XE "Time Step Size" }To illustrate the significant differences between 
acceleration and displacement loading, this problem will be solved using all forty 
eigenvectors, zero damping and three different integration time steps. The 
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absolute top displacement, base shears and moments at the second level are 
summarized in Table 22.2. In addition, the maximum input energy and kinetic 
energy in the model are summarized. 

Table 22.2 Comparison of Acceleration and Displacement Loads (40 
Eigenvalues – 0.0 Damping Ratio) 

Linear Acceleration Loads Linear Displacement Loads  
01.0=∆t  005.0=∆t  001.0=∆t  01.0=∆t 005.0=∆t  001.0=∆t  

20u  
(Inches)

5.306  
@ 0.610 

5.306 
@0.610 

5.306 
@0.610 

5.306 
@0.610 

5.307 
@0.610 

5.307 
@0.610 

2V  
(Kips)

-94.35 
@0.310 

-94.35 
@0.310 

-94.58 
@0.308 

-90.83 
@0.660 

-74.74 
@0.310 

94.91 
@0.308 

2M  
(K - In.)

-149,500 
@0.610 

-149,500 
@0.610 

-149,500 
@0.610 

-152,000
@0.610 

-148,100 
@0.605 

-149,500
@0.610 

ENERGY 
(Input To 
Model) 

339.9 
@0.410 

339.9 
@0.405 

340.0 
@0.401 

1,212,000
@0.310 

1,183,000 
@0.305 

1,180,000
@0.301 

K-ENERGY 
(Within 
Model) 

339.9 
@0.410 

339.9 
@0.405 

339.9 
@0.402 

166.2 
@0.410 

164.1 
@0.405 

163.9 
@0.402 

For linear acceleration load, all results are exact regardless of the size of the time 
step because the integration algorithm is based on the exact solution for a linear 
function. The minor difference in results is because some maximum values occur 
within the larger time step results. However, using the same linear integration 
algorithm for displacement loads produces errors because displacements are 
cubic function within each time step (Appendix J). Therefore, the larger the time 
step, the larger the error.  

For linear displacement loads, the maximum displacement at the top of the 
structure and the moment t at the second level appear to be insensitive to the size 
of the time step. However, the forces near the top of the structure and the shear at 
the second level can have significant errors because of large integration time 
steps. For a time step of 0.01 seconds, the maximum shear of -90.83 kips occurs 
at 0.660 seconds; whereas, the exact value for the same time step is –94.35 kips 
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and occurs at 0.310 seconds. A time-history plot of both shears forces is shows in 
Figure 22.4. 

Figure 22.4 Shear at Second Level Vs.  
Time With 01.0=∆t -Seconds and Zero Damping 

The errors resulting from the use of large time steps are not large in this example 
because the loading is a simple function that does not contain high frequencies. 
However, the author has had experience with other structures, using real 
earthquake displacement loading, where the errors are over 100 percent using a 
time step of 0.01 seconds. The errors associated with the use of large time steps 
in a mode superposition analysis can be eliminated for linear elastic structures 
using the new exact integration algorithm presented in Chapter 13. 

An examination of the input and kinetic energy clearly indicates that there is a 
major mathematical differences between acceleration loads (relative 
displacement formulation) and displacement loads (absolute displacement 
formulation). In the relative displacement formulation, a relatively small amount 
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of energy, 340 k-in, is supplied to the mathematical model; whereas the point 
loads associated with the absolute formulation applied near the base of the 
structure imparts over 1,000,000 k-in of energy to the model. Also, the maximum 
kinetic energy (proportional to the sum of mass times velocity squared) within 
the model is 340 k-in for the relative formulation compared to 164 kip-in for the 
absolute formulation.  

The results clearly indicate that errors are introduced if large time steps are used 
with the linear displacement approximation within each time step. The spatial 
load distribution is significantly different between the relative and displacement 
formulations. For linear acceleration loads, large time steps can be used. 
However, very small time steps, 0.001 second, are required for absolute 
displacement loading to obtain accurate results. However, if modal superposition 
is used, the new cubic displacement load approximation produces results 
identical to those obtained using linear acceleration loads for zero damping. 

22.5.4 Earthquake Analysis with Finite Damping 

It is very important to understand that the results produced from a mathematical 
computer model may be significantly different from the behavior of the real 
physical structure. The behavior of a real structure will satisfy the basic laws of 
physics, whereas the computer model will satisfy the laws of mathematics after 
certain assumption have been made. The introduction of classical linear viscous 
damping will illustrate this problem. 

Table 22.3 summarizes selective results of an analysis of the structure shown in 
Figure 22.2 for both zero and five percent damping for all frequencies. The time 
step used for this study is 0.005 second; hence, for linear acceleration loads and 
cubic displacement loads, exact results (within three significant figures) are 
produced. 

The results clearly indicate that 5 percent damping produces different results for 
acceleration and displacement loading. The top displacements and the moments 
near the base are very close. However, the shear at the second level and the 
moment at the tenth level are significantly different. The shears at the second 
level vs. time for displacement loading are plotted in Figure 22.5 for 5 percent 
damping. 
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Table 22.3. Comparison of Acceleration and Displacement Loads for 
Different Damping (40 Eigenvalues, 0.005 Second Time Step) 

Linear Acceleration Loads Cubic Displacement Loads 
 

00.0=ξ  05.0=ξ  00.0=ξ  05.0=ξ  

20u  
(Inch)

5.306 @ 0.610 
-5.305 @ 1.230 

4.939 @ 0.580 
-4.217 @ 1.205 

5.307 @ 0.610 
-5.304 @ 1.230 

4.913 @ 0.600 
-4.198 @ 1.230 

2V  
(Kips)

88.31 @ 0.130 
-94.35 @ 0.310 

84.30 @ 0.130 
-95.78 @ 0.310 

88.28 @ 0.135 
-94.53 @ 0.310 

135.1 @ 0.150 
-117.1 @ 0.340 

2M  
(K-in.)

148,900 @1.230 
-149,500 @ 0.605 

116,100 @1.200
-136,300 @ 0.610 

148,900 @1.230 
-149,500 @ 0.605 

115,300 @1.230
-136,700 @ 0.605 

10M  
(K-in.)

81,720 @ 0.290 
-63,470 @ 0.495 

77,530 @ 0.300 
-64,790 @ 0.485 

81,720 @ 0.290 
-63,470 @ 0.495 

80,480 @ 0.320 
-59,840 @ 0.495 

 

Figure 22.5 Shear at Second Level Vs. Time Due To Cubic Displacement 
Loading. (40 Eigenvalues –  005.0=∆t Seconds) 
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The results shown in Figure 22.5 are physically impossible for a real structure 
because the addition of 5 percent damping to an undamped structure should not 
increase the maximum shear from 88.28 kips to 135.10 kips. The reason for this 
violation of the fundamental laws of physics is the invalid assumption of an 
orthogonal damping matrix required to produce classical damping. 

Classical damping always has a mass-proportional damping component, as 
physically illustrated in Figure 22.6, which causes external velocity-dependent 
forces to act on the structure. For the relative displacement formulation, the 
forces are proportional to the relative velocities. Whereas for the case of the 
application of base displacement, the external force is proportional to the 
absolute velocity. Hence, for a rigid structure, large external damping forces can 
be developed because of rigid body displacements at the base of the structure. 
This is the reason that the shear forces increase as the damping is increased, as 
shown in Figure 22.6. For the case of a very flexible (or base isolated) structure, 
the relative displacement formulation will produce large errors in the shear forces 
because the external forces at a level will be carried direct by the dash-pot at that 
level. Therefore, neither formulation is physically correct. 

 . RELATIVE DISPLACEMENT FORMULATION ABSOLUTE  DISPLACEMENT FORMULATION

ru su

xu
rxs uuu +=

xum &&

0IC xss =xu& 0IC xss ≠xu&

 

Figure 22.6 Example to Illustrate Mass-Proportional Component  
in Classical Damping. 
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These inconsistent damping assumptions are inherent in all methods of linear and 
nonlinear dynamic analysis that use classical damping or mass-proportional 
damping. For most applications, this damping-induced error may be small; 
however, the engineer/analyst has the responsibility to evaluate, using simple 
linear models, the magnitude of those errors for each different structure and 
earthquake loading. 

22.5.5 The Effect of Mode Truncation 

{ XE "Mode Truncation" }The most important difference between the use of 
relative and absolute displacement formulations is that higher frequencies are 
excited by base displacement loading. Solving the same structure using a 
different number of modes can identify this error. If zero damping is used, the 
equations of motions can be evaluated exactly for both relative and absolute 
displacement formulations and the errors associated with mode-truncation only 
can be isolated. 

Selective displacements and member forces for both formulations are 
summarized in Table 22.4.  

Table 22.4 Mode-Truncation Results - Exact Integration for 0.005 Second Time 
Steps – Zero Damping 

Linear Acceleration Loads Cubic Displacement Loads Number 
of Modes 

20u  2V  2M  10M  20u  2V  2M  10M  

4 5.306 83.10 -149,400 81,320 5.307 -51,580 -1,441,000 346,800 

10 5.306 -94.58 -149,500 81,760 5.307 -33,510 -286,100 642,100 

21 5.306 -94.73 -149,500 81,720 5.307 -55,180 -4,576,000 78,840 

30 5.306 -94.42 149,500 81,720 5.307 -11,060 -967,200 182,400 

35 5.306 94,35 149,500 81,720 5.307 -71,320 -149,500 106,100 

40 5.306 -94.35 -149,500 81,720 5.307 -94.53 -149,500 81,720 

The results shown in Table 22.4 clearly indicate that only a few modes are 
required to obtain a converged solution using the relative displacement 
formulation. However, the results using the absolute displacement formulation 
are almost unbelievable. The reason for this is that the computational model and 
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the real structure are required to propagate the high frequencies excited by the 
base displacement loading into the structure. The displacement at the top of the 
structure, which is dominated by the first mode, is insensitive to the high 
frequency wave propagation effects. However, the shear and moment forces 
within the structure will have significant errors if all the frequencies are not 
present in the analysis. Table 22.5 summarizes selective displacements and 
member forces for both formulations for 5 percent damping. 

Table 22.5 Mode-Truncation Errors - Exact Integration for 0.005 Second Time 
Steps – 5 % Damping 

Linear Acceleration Loads Cubic Displacement Loads Number 
of Modes 

20u  2V  2M  10M  20u  2V  2M  10M  

4 4.934 -82.51 -136,300 77,110 4.913 -5,153 1,439,000 374,600 

10 4.939 -96.01 -136,300 -64,810 4.913 -33,500 -290,000 640,900 

21 4.939 -96.16 -136,300 -64,790 4.913 -55,170 -4,573,000 77,650 

30 “ “ “ “ 4.913 -11,050 -966,000 180,800 

35 “ “ “ “ 4.913 -342.7 -136,800 104,500 

40 “ “ “ “ 4.913 -135.1 -136,800 80,480 

The results shown in Table 22.5 indicate that the addition of modal damping does 
not significantly change the fundamental behavior of the computational model. It 
is apparent that a large number of high frequencies must be included in the 
analysis if the computational model is to accurately predict forces in the real 
structure. It is of considerable interest, however, that mode truncation for this 
problem produces erroneously large forces that are difficult to interpret. To 
explain those errors, it is necessary to examine the individual mode shapes. For 
example, the 21st mode is a lateral displacement at the second level only, with all 
other mode displacement near zero. This is a very important mode because a 
concentrated force associated with the base displacement loading is applied at the 
second level. Hence, the addition of that mode to the analysis increases the 
bending moment at the second level to 4,573,000 and decreases the moment at 
the 10th level to 77,650. Additional modes are then required to reduce the internal 
forces at the second level.  
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22.6 USE OF LOAD DEPENDENT RITZ VECTORS 

In Table 22.6 the results of an analysis using different numbers of Load 
Dependent Ritz vectors is summarized. In addition, mass, static and dynamic 
participation factors are presented. 

Table 22.6 Results Using LDR Vectors-  0.005t =∆  Cubic Displacement Loading 
– Damping = 5 % 

Number of 
Vectors 20u  2V  2M  10M  Mass, Static and Dynamic 

Load-Participation 
4 4.913 111.4 -136,100 80,200 100. 100. 29.5 
7 4.913 132.6 -136,700 80,480 100. 100. 75.9 

10 4.913 134.5 -136,800 80,490 100. 100. 98.0 
21 4.913 135.1 -136,800 80.480 100. 100. 100. 
30 4.913 135.1 -136,800 80,480 100. 100. 100. 

The use of LDR vectors virtually eliminates all problem associated with the use 
of the exact eigenvectors. The reason for this improved accuracy is that each set 
of LDR vectors contains the static response of the system. To illustrate this, the 
fundamental properties of a set of seven LDR vectors are summarized in Table 
22.7. 

Table 22.7   Periods and Participation Factors for LDR Vectors 

Cumulative Sum of 
Load Participation Factors 

Base Displacement Loading 
(Percentage) 

Vector 
Number 

Approximate 
Period 

(Seconds) 

Cumulative Sum of 
Mass Participation 

Factors  
X-Direction 

(Percentage) Static Dynamic 

1 1.242178 62.645 0.007 0.000 

2 0.199956 81.823 0.093 0.000 

3 0.072474 88.312 0.315 0.000 

4 0.037780 91.568 0.725 0.002 

5 0.023067 93.779 1.471 0.009 

6 0.012211 96.701 5.001 0.126 

7 0.002494 100.000 100.00 75.882 
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The first six LDR vectors are almost identical to the exact eigenvectors 
summarized in Table 22.1. However, the seventh vector, which is a linear 
combination of the remaining eigenvectors, contains the high frequency response 
of the system. The period associated with this vector is over 400 cycles per 
second; however, it is the most important vector in the analysis of a structure 
subjected to base displacement loading. 

22.7 SOLUTION USING STEP-BY-STEP INTEGRATION 

{ XE "Step By Step Integration" }The same problem is solved using direct 
integration by the trapezoidal rule, which has no numerical damping and 
theoretically conserves energy. However, to solve the structure with zero 
damping, a very small time step would be required. It is almost impossible to 
specify constant modal damping using direct integration methods. A standard 
method to add energy dissipation to a direct integration method is to add 
Rayleigh damping, in which only damping ratios can be specified at two 
frequencies. For this example 5 percent damping can be specified for the lowest 
frequency and at 30 cycles per second. Selective results are summarized in Table 
22.8 for both acceleration and displacement loading. 

Table 22.8 Comparison of Results Using Constant Modal Damping and the 
Trapezoidal Rule and Rayleigh Damping (0.005 Second Time Step) 

Acceleration Loading Displacement Loading 

 Trapezoidal Rule 
Using 

Rayleigh Damping 

Exact Solution Using 
Constant, Modal 

Damping 05.0=ξ  

Trapezoidal Rule 
Using 

Rayleigh Damping 

Exact Solution Using 
Constant, Modal 

Damping 05.0=ξ  

20u  
(Inch)

4.924 @ 0.580 
-4.217 @ 1.200 

4.939 @ 0.580 
-4.217 @ 1.205 

4.912 @ 0.600 
-4.182 @ 1.220 

4.913 @ 0.600 
-4.198 @ 1.230 

2V  
(Kips)

86.61 @ 0.125 
-95.953 @ 0.305 

84.30 @ 0.130 
-95.78 @ 0.310 

89.3 @ 0.130 
-93.9 @ 0.305 

135.1 @ 0.150 
-117.1 @ 0.340 

2M  
(k–in.)

115,600 @ 1.185 
-136,400 @ 0.605 

116,100 @1.200 
-136,300 @ 0.610 

107.300 @ 1.225
-126,300 @ 0.610 

115,300 @1.230 
-136,700 @ 0.605 

10M  
(K-in.)

78,700 @ 0.285 
-64,500 @ 0.485 

77,530 @ 0.300 
-64,790 @ 0.485 

81.,30 @ 0.280 
61,210@ 0.480 

80,480 @ 0.320 
-59,840 @ 0.495 
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It is apparent that the use of Rayleigh damping for acceleration loading produces 
a very good approximation of the exact solution using constant modal damping. 
However, for displacement loading, the use of Rayleigh damping, in which the 
high frequencies are highly damped and some lower frequencies are under 
damped, produces larger errors. A plot of the shears at the second level using the 
different methods is shown in Figure 22.7. It is not clear if the errors are caused 
by the Rayleigh damping approximation or by the use of a large time step. 

It is apparent that errors associated with the unrealistic damping of the high 
frequencies excited by displacement loading are present in all step-by-step 
integration methods. It is a property of the mathematical model and is not 
associated with the method of solution of the equilibrium equations. 

 

Figure 22.7 Comparison of Step-By-Step Solution Using the Trapezoidal Rule 
and Rayleigh Damping with Exact Solution  
(0.005 second time-step and 5% damping) 

The effective damping in the high frequencies, using displacement loading and 
Rayleigh damping, can be so large that the use of large numerical integration 
time steps produces almost the same results as using small time steps. However, 
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the accuracy of the results cannot be justified using this argument, because the 
form of the Rayleigh damping used in the computer model is physically 
impossible within a real structure. In addition, the use of a numerical integration 
method that produces numerical energy dissipation in the higher modes may 
produce unrealistic result when compared to an exact solution using displacement 
loading. 

22.8 SUMMARY 

Several new sources of numerical errors associated with the direct application of 
earthquake displacement loading have been identified. Those problems are 
summarized as follows: 

1. Displacement loading is fundamentally different from acceleration loading 
because a larger number of modes are excited. Hence, a very small time step 
is required to define the displacement record and to integrate the dynamic 
equilibrium equations. A large time step, such as 0.01 second, can cause 
significant unpredictable errors. 

2. The effective damping associated with displacement loading is larger than 
that for acceleration loading. The use of mass proportional damping, inherent 
in Rayleigh and classical modal damping, cannot be physically justified. 

3. Small errors in maximum displacements do not guarantee small errors in 
member forces. 

4. The 90 percent mass participation rule, which is used to estimate errors for 
acceleration loading, does not apply to displacement loading. A larger 
number of modes are required to accurately predict member forces for 
absolute displacement loading. 

5. For displacement loading, mode truncation in the mode superposition method 
may cause large errors in the internal member forces.  

The following numerical methods can be used to minimize those errors: 
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1. A new integration algorithm based on cubic displacements within each time 
step allows the use of larger time steps. 

2. To obtain accurate results, the static load-participation factors must be 
very close to 100 percent. 

3. The use of LDR vectors will significantly reduce the number of vectors 
required to produce accurate results for displacement loading. 

4. The example problem illustrates that the errors can be significant if 
displacement loading is applied based on the same rules used for 
acceleration loading. However, additional studies on different types of 
structures, such as bridge towers, must be conducted. Also, more 
research is required to eliminate or justify the differences in results 
produced by the relative and absolute displacement formulations for non-
zero modal damping. 

Finally, the state-of-the-art use of classical modal damping and Rayleigh 
damping contains mass proportional damping that is physically impossible. 
Therefore, the development of a new mathematical energy dissipation model is 
required if modern computer programs are to be used to accurately simulate the 
true dynamic behavior of real structures subjected to displacement loading.  
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