
 

 

21. 

NONLINEAR ELEMENTS 
Earthquake Resistant Structures Should Have a Limited 

Number of Nonlinear Elements that can be Easily Inspected 
and Replaced after a Major Earthquake. 

21.1 INTRODUCTION  

{ XE "Energy:Energy Dissipation Elements" }{ XE "Nonlinear Elements" }Many 
different types of practical nonlinear elements can be used in conjunction with 
the application of the Fast Nonlinear Analysis method. The FNA method is very 
effective for the design or retrofit of structures to resist earthquake motions 
because it is designed to be computationally efficient for structures with a limited 
number of predefined nonlinear or energy dissipating elements. This is consistent 
with the modern philosophy of earthquake engineering that energy dissipating 
elements should be able to be inspected and replaced after a major earthquake. 

Base isolators are one of the most common types of predefined nonlinear 
elements used in earthquake resistant designs. In addition, isolators, mechanical 
dampers, friction devices and plastic hinges are other types of common nonlinear 
elements. Also, gap elements are required to model contact between structural 
components and uplifting of structures. A special type of gap element with the 
ability to crush and dissipate energy is useful to model concrete and soil types of 
materials. Cables that can take tension only and dissipate energy in yielding are 
necessary to capture the behavior of many bridge type structures. In this chapter 
the behavior of several of those elements will be presented and detailed solution 
algorithms will be summarized. 
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21.2 GENERAL THREE-DIMENSIONAL TWO-NODE ELEMENT 

The type of nonlinear element presented in this chapter is similar to the three-
dimensional beam element. However, it can degenerate into an element with zero 
length where both ends are located at the same point in space. Therefore, it is 
possible to model sliding friction surfaces, contact problems and concentrated 
plastic hinges. Like the beam element, the user must define a local 1-2-3 
reference system to define the local nonlinear element properties and to interpret 
the results. A typical element, connected between two points I and J, is shown in 
Figure 21.1. 
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Figure 21.1 Relative Displacements - Three-Dimensional Nonlinear Element 

It is important to note that three displacements and three rotations are possible at 
both points I and J and can be expressed in either the global X-Y-Z or local 1-2-3 
reference system. The force and displacement transformation matrices for this 
nonlinear element are the same as for the beam element given in Chapter 4. For 
most element types, some of those displacements do not exist or are equal at I 
and J. Because each three-dimensional element has six rigid body displacements, 
the equilibrium of the element can be expressed in terms of the six relative 
displacements shown in Figure 21.1. Also, L can equal zero. For example, if a 
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concentrated plastic hinge with a relative rotation about the local 2-axis is placed 
between points I and J, only a relative rotation d5  exists. The other five relative 
displacements must be set to zero. This can be accomplished by setting the 
absolute displacements at joints I and J equal. 

21.3 GENERAL PLASTICITY ELEMENT 

{ XE "Plasticity Element" }The general plasticity element can be used to model 
many different types of nonlinear material properties. The fundamental properties 
and behavior of the element are illustrated in Figure 21.2. 
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Figure 21.2 Fundamental Behavior of Plasticity Element 

where   ek  = initial linear stiffness  

  yk  = Yield stiffness 

  dy  = Yield deformation 

The force-deformation relationship is calculated from: 

e )k - k( + d k = f yey  (21.1) 

Where d  is the total deformation and e  is an elastic deformation term and has a 
range dy± . It is calculated at each time step by the numerical integration of one 
of the following differential equations: 
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The following finite difference approximations for each time step can be made: 
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The numerical solution algorithm (six computer program statements) can be 
summarized at the end of each time increment ∆ t , at time t  for iteration i , in 
Table 21.1. 

Table 21.1 Iterative Algorithm for Plasticity Element 

1. Change in deformation for time step ∆t  at time t for iteration i 
v =  d  -  dt

(i)
t - t∆  

2. Calculate elastic deformation for iteration i  
if  v e   0 t

(i-1) ≤   t
(i)

t - te  =  e  +  v∆   
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if  t
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ye  >  d         t
(i)

ye  =  d  

if  t
(i)

ye  <  - d       t
(i)

ye  =  - d  

3. Calculate iterative force: 

t
(i)

y t
(i)

e y t
(i)f  =  k d  +  ( k  -  k )e  

Note that the approximate term 
d

e
y

t-t ∆  is used from the end of the last time 

increment rather than the iterative term 
d
e

y

(i)
t . This approximation eliminates all 

problems associated with convergence for large values of n . However, the 
approximation has insignificant effects on the numerical results for all values of 



NONLINEAR ELEMENTS 21-5 

n . For all practical purposes, a value of n  equal to 20 produces true bilinear 
behavior. 

21.4 DIFFERENT POSITIVE AND NEGATIVE PROPERTIES 

{ XE "Algorithms for:Bilinear Plasticity Element" }The previously presented 
plasticity element can be generalized to have different positive, Pd , and negative, 

nd , yield properties. This will allow the same element to model many different 
types of energy dissipation devices, such as the double diagonal Pall friction 
element. 

Table 21.2 Iterative Algorithm for Non-Symmetric Bilinear Element 

1. Change in deformation for time step ∆t  at time t for iteration i  
v =  d  -  dt

(i)
t - t∆  

2. Calculate elastic deformation for iteration i  
if  v e   0 t
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if  d- < e n
(i)
t  d- = e n

(i)
t  

3. Calculate iterative force at time t : 

t
(i)

y t
(i)

e y t
(i)f  =  k d  +  ( k  -  k )e  

For constant friction, the double diagonal Pall element has ke = 0  and n ≈ 20 . 
For small forces both diagonals remain elastic, one in tension and one in 
compression. At some deformation, n

d , the compressive element may reach a 
maximum possible value. Friction slipping will start at the deformation pd  after 
which both the tension and compression forces will remain constant until the 
maximum displacement for the load cycle is obtained. 



21-6 STATIC AND DYNAMIC ANALYSIS 

This element can be used to model bending hinges in beams or columns with 
non-symmetric sections. The numerical solution algorithm for the general 
bilinear plasticity element is given in Table 21.2. 

21.5 THE BILINEAR TENSION-GAP-YIELD ELEMENT 

{ XE "Tension-Gap-Yield Element" }The bilinear tension-only element can be 
used to model cables connected to different parts of the structure. In the retrofit 
of bridges, this type of element is often used at expansion joints to limit the 
relative movement during earthquake motions. The fundamental behavior of the 
element is summarized in Figure 21.3. The positive number 0d  is the axial 
deformation associated with initial cable sag. A negative number indicates an 
initial pre-stress deformation. The permanent element yield deformation is pd . 
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Figure 21.3 Tension-Gap-Yield Element   

The numerical solution algorithm for this element is summarized in Table 21.3. 
Note that the permanent deformation calculation is based on the converged 
deformation at the end of the last time step. This avoids numerical solution 
problems. 
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{ XE "Algorithms for:Tension-Gap-Yield Element" }Table 21.3 Iterative 
Algorithm for Tension-Gap-Yield Element 

1. Update Tension Yield Deformation from Previous Converged Time Step 

ytt dddy −−= ∆− 0  

if  y d p<   then   d yp =  

2. Calculate Elastic Deformation for Iteration (i) 

0
)( ddd i

t −=  

t
(i)

pe  =  d d−  

if  t
(i)

ye  d>   then t
(i)

ye  =  d  

3. Calculate Iterative Force: 

t
(i)

y t
(i)

e y t
(i)f  =  k d d  +  ( k  -  k )e( )− 0  

if  0)( <i
tf    then     0)( =i

tf  

21.6 NONLINEAR GAP-CRUSH ELEMENT 

Perhaps the most common type of nonlinear behavior that occurs in real 
structural systems is the closing of a gap between different parts of the structure; 
or, the uplifting of the structure at its foundation. The element can be used at 
abutment-soil interfaces and for modeling soil-pile contact. The gap/crush 
element has the following physical properties: 

1.  The element cannot develop a force until the opening 0d  gap is closed. A 
negative value of 0d  indicates an initial compression force.  

2.  The element can only develop a negative compression force. The first yield 
deformation yd  is specified by a positive number. 

3.  The crush deformation cd  is always a monotonically decreasing negative 
number. 

The numerical algorithm for the gap-crush element is summarized in Table 21.4. 
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{ XE "Algorithms for:Gap-Crush Element" }Table 21.4 Iterative Algorithm for 
Gap-Crush Element 

1. Update Crush Deformation from Previously Converged Time Step: 
y d d dt t y= + +−∆ 0  

if  cdy >   then   ydc =  

2. Calculate Elastic Deformation: 

co
i

t
(i)
t dd d = e −+)(  

if  t
(i)

ye  <  - d   then t
(i)

ye  =  - d  

3. Calculate Iterative Force: 

e)k - k( + ddk = f (i)
tye

(i)
ty

(i)
t )( 0+  

if  0)( >i
tf    then     0)( =i

tf  

The numerical convergence of the gap element can be very slow if a large elastic 
stiffness term ek  is used. The user must take great care in selecting a physically 
realistic number. To minimize numerical problems, the stiffness ek  should not be 
over 100 times the stiffness of the elements adjacent to the gap. The dynamic 
contact problem between real structural components often does not have a unique 
solution. Therefore, it is the responsibility of the design engineer to select 
materials at contact points and surfaces that have realistic material properties that 
can be predicted accurately. 

21.7 VISCOUS DAMPING ELEMENTS 

{ XE "Algorithms for:Damping Element" }{ XE "Algorithms for:Viscous 
Element" }Linear velocity-dependent energy-dissipation forces exist in only a 
few special materials subjected to small displacements. In terms of equivalent 
modal damping, experiments indicate that they are a small fraction of one 
percent. Manufactured mechanical dampers cannot be made with linear viscous 
properties because all fluids have finite compressibility and nonlinear behavior is 
present in all manmade devices. In the past it has been common practice to 
approximate the behavior of those viscous nonlinear elements by a simple linear 
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viscous force. More recently, vendors of those devices have claimed that the 
damping forces are proportional to a power of the velocity. Experimental 
examination of a mechanical device indicates a far more complex behavior that 
cannot be represented by a simple one-element model. 

The FNA method does not require that those damping devices be linearized or 
simplified to obtain a numerical solution. If the physical behavior is understood, 
it is possible for an iterative solution algorithm to be developed that will 
accurately simulate the behavior of almost any type of damping device. To 
illustrate the procedure, let us consider the device shown in Figure 21.4. 
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Figure 21.4 General Damping Element Connected Between Points I and J 

It is apparent that the total deformation, )(i
te , across the damper must be 

accurately calculated to evaluate the equilibrium within the element at each time 
step. The finite difference equation used to estimate the damper deformation at 
time t is: 

)(
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t

tt

i
tt

i
t eetedeee &&& +

∆
+=τ+= ∆−∆−

∆−
τ∆− ∫  (21.5) 

A summary of the numerical algorithm is summarized in Table 21.5. 
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{ XE "Algorithms for:Nonlinear Damping" }Table 21.5 Iterative Algorithm 
for Nonlinear Viscous Element 

1. Estimate damper force from last iteration: 
)( )1()()( −−= i

t
i

ts
i

s edkf  

2. Estimate damper velocity: 

)()( )(
1)(

i
s

N
i
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3. Estimate damper deformation: 

)(
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i
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t eete e && +

∆
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4. Calculate total iterative force: 

t
(i)

p t
(i)

s t
i

t
(i)f  =  k d k d e+ −( )( )  

21.8 THREE-DIMENSIONAL FRICTION-GAP ELEMENT 

{ XE "Friction-Gap Element" }Many structures have contact surfaces between 
components of the structures or between structure and foundation that can only 
take compression. During the time the surfaces are in contact, it is possible for 
tangential friction forces to develop between the surfaces. The maximum 
tangential surface forces, which can be developed at a particular time, are a 
function of the normal compressive force that exists at that time. If the surfaces 
are not in contact, the normal and the surface friction forces must be zero. 
Therefore, surface slip displacements will take place during the period of time 
when the allowable friction force is exceeded or when the surfaces are not in 
contact. 

To develop the numerical algorithm to predict the dynamic behavior between 
surfaces, consider the contact surface element shown in Figure 21.5. The two 
surface nodes are located at the same point in space and are connected by the 
gap-friction element that has contact stiffness k in all three directions. The three 
directions are defined by a local n, s and s+90o reference system. The element 
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deformations dn, ds and ds+90 are relative to the absolute displacements of the two 
surfaces. 
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Figure 21.5 Three-Dimensional Nonlinear Friction-Gap Element 

During the time of contact, the force-deformation relationships for the friction-
gap element are: 

Normal Force: nn kdf =  (21.6a) 

Maximum Allowable Slip Force: na ff µ=  (21.6b) 

Tangential Surface Forces: 

ass

sss

ffsignf

ydkf

)(

)(

=

−=
or,  

 
 (21.6c) 

The coefficient of sliding friction is designated by µ . The surface slip 
deformation in the s direction is sy . 

The iterative numerical algorithm for a typical time step is summarized in Table 
21.6. To minimize numerical problems, the stiffness k  should not be over 100 
times the stiffness of the elements adjacent to the gap.  
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{ XE "Algorithms for:Friction-Gap Element" }Table 21.6 Iterative Algorithm 
for Friction-Gap Element 

1. If i=1, update slip deformations from previously converged time step at s 

and s+900 

)()( ttyty ss ∆−=  

2. Evaluate normal and allowable slip forces 
if 0)( >i

nd  0)( =i
nf  

if 0)( ≤i
nd  )()( i

n
i

n kdf =  

 )()( i
n

i
a ff µ=  

3. Calculate surface forces at s and s+900 

if 0)( >i
nd  0)( =i

sf  
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nd  )( )()(

s
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s
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i
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a
i

s
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4. Calculate slip deformations at s and s+900 

if 0)( >i
nd                )()( i

s
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s dy =  
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s
i

s
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21.9 SUMMARY 

The use of approximate “equivalent linear viscous damping” has little theoretical 
or experimental justification and produces a mathematical model that violates 
dynamic equilibrium. It is now possible to accurately simulate the behavior of 
structures with a finite number of discrete gap, tension only, and energy 
dissipation devices installed. The experimentally determined properties of the 
devices can be directly incorporated into the computer model. 

 

 


