
 

 

2. 

EQUILIBRIUM AND COMPATIBILITY 

Equilibrium Is Essential - Compatibility Is Optional  

2.1 INTRODUCTION 

Equilibrium equations set the externally applied loads equal to the sum of the 

internal element forces at all joints or node points of a structural system; they are 

the most fundamental equations in structural analysis and design. The exact 

solution for a problem in solid mechanics requires that the differential equations 

of equilibrium for all infinitesimal elements within the solid must be satisfied.  

Equilibrium is a fundamental law of physics and cannot be violated within a 

"real" structural system. Therefore, it is critical that the mathematical model, 

which is used to simulate the behavior of a real structure, also satisfies those 

basic equilibrium equations. 

It is important to note that within a finite element, which is based on a formal 

displacement formulation, the differential stress-equilibrium equations are not 

always satisfied. However, inter-element force-equilibrium equations are 

identically satisfied at all node points (joints). The computer program user who 

does not understand the approximations used to develop a finite element can 

obtain results that are in significant error if the element mesh is not sufficiently 

fine in areas of stress concentration[1]. 

Compatibility requirements should be satisfied. However, if one has a choice 

between satisfying equilibrium or compatibility, one should use the equilibrium- 

based solution. For real nonlinear structures, equilibrium is always satisfied in 
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the deformed position. Many real structures do not satisfy compatibility caused 

by creep, joint slippage, incremental construction and directional yielding. 

2.2 FUNDAMENTAL EQUILIBRIUM EQUATIONS 

The three-dimensional equilibrium of an infinitesimal element, shown in Figure 

1.1, is given by the following equilibrium equations[2]: 
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The body force,  i , is per unit of volume in the i-direction and represents 

gravitational forces or pore pressure gradients. Because jiij  = , the 

infinitesimal element is automatically in rotational equilibrium. Of course for this 

equation to be valid for large displacements, it must be satisfied in the deformed 

position, and all stresses must be defined as force per unit of deformed area. 

2.3 STRESS RESULTANTS - FORCES AND MOMENTS 

In structural analysis it is standard practice to write equilibrium equations in 

terms of stress resultants rather than in terms of stresses. Force stress resultants 

are calculated by the integration of normal or shear stresses acting on a surface. 

Moment stress resultants are the integration of stresses on a surface times a 

distance from an axis. 

A point load, which is a stress resultant, is by definition an infinite stress times an 

infinitesimal area and is physically impossible on all real structures. Also, a point 

moment is a mathematical definition and does not have a unique stress field as a 

physical interpretation. Clearly, the use of forces and moments is fundamental in 

structural analysis and design. However, a clear understanding of their use in 
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finite element analysis is absolutely necessary if stress results are to be physically 

evaluated. 

For a finite size element or joint, a substructure, or a complete structural system 

the following six equilibrium equations must be satisfied: 

0= F        0= F         0 = F zyx   

0= M        0= M         0 = M zyx   (2.2) 

For two dimensional structures only three of these equations need to be satisfied. 

2.4 COMPATIBILITY REQUIREMENTS 

For continuous solids we have defined strains as displacements per unit length. 

To calculate absolute displacements at a point, we must integrate the strains with 

respect to a fixed boundary condition. This integration can be conducted over 

many different paths. A solution is compatible if the displacement at all points is 

not a function of the path. Therefore, a displacement compatible solution 

involves the existence of a uniquely defined displacement field. 

In the analysis of a structural system of discrete elements, all elements connected 

to a joint or node point must have the same absolute displacement. If the node 

displacements are given, all element deformations can be calculated from the 

basic equations of geometry. In a displacement-based finite element analysis, 

node displacement compatibility is satisfied. However, it is not necessary that the 

displacements along the sides of the elements be compatible if the element passes 

the "patch test."    

A finite element passes the patch test "if a group (or patch) of elements, of 

arbitrary shape, is subjected to node displacements associated with constant 

strain; and the results of a finite element analysis of the patch of elements yield 

constant strain." In the case of plate bending elements, the application of a 

constant curvature displacement pattern at the nodes must produce constant 

curvature within a patch of elements. If an element does not pass the patch test, it 

may not converge to the exact solution. Also, in the case of a coarse mesh, 
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elements that do not pass the patch test may produce results with significant 

errors.  

2.5 STRAIN DISPLACEMENT EQUATIONS 

If the small displacement fields   , 21 uu and 3 u are specified, assumed or 

calculated, the consistent strains can be calculated directly from the following 

well-known strain-displacement equations[2]: 
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2.6 DEFINITION OF ROTATION 

A unique rotation at a point in a real structure does not exist. A rotation of a 

horizontal line may be different from the rotation of a vertical line. However, in 

many theoretical books on continuum mechanics the following mathematical 

equations are used to define rotation of the three axes: 













−






1

2

2

1
3

2

1

x

u

x

u
  (2.4a) 



EQUILIBRIUM AND COMPATIBILITY  2-5 
















−






3

1

1

3
2

2

1

x

u

x

u
  (2.4b) 













−






2

3

3

2
1

2

1

x

u

x

u
  (2.4c) 

It is of interest to note that this definition of rotation is the average rotation of 

two normal lines. It is important to recognize that these definitions are not the 

same as used in beam theory when shearing deformations are included. When 

beam sections are connected, the absolute rotation of the end sections must be 

equal. 

2.7 EQUATIONS AT MATERIAL INTERFACES 

One can clearly understand the fundamental equilibrium and compatibility 

requirements from an examination of the stresses and strains at the interface 

between two materials. A typical interface for a two-dimensional continuum is 

shown in Figure 2.1. By definition, the displacements at the interface are equal. 

Or, ),(),( nsunsu ss =  and ),(),( nsunsu nn = . 

s,  us(s,n)n,  un(s,n)

GE,

GE,

 

Figure 2.1 Material Interface Properties 

Normal equilibrium at the interface requires that the normal stresses be equal. Or: 

nn  =  (2.5a) 
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Also, the shear stresses at the interface are equal. Or: 

nsns  =  (2.5b) 

Because displacement ss uu  and  must be equal and continuous at the interface: 

ss  =  (2.5c) 

Because the material properties that relate stress to strain are not equal for the 

two materials, it can be concluded that: 

ss    (2.5d) 

nn    (2.5e) 

nsns    (2.5f) 

For a three-dimensional material interface on a s-t surface, it is apparent that the 

following 12 equilibrium and compatibility equations exist: 

nn  =              nn    (2.6a) 

 ss               ss  =  (2.6b) 

tt                tt  =  (2.6c) 

nsns  =             nsns    (2.6d) 

ntnt  =             ntnt    (2.6e) 

stst               stst  =  (2.6f) 

These 12 equations cannot be derived because they are fundamental physical 

laws of equilibrium and compatibility. It is important to note that if a stress is 

continuous, the corresponding strain, derivative of the displacement, is 
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discontinuous. Also, if a stress is discontinuous, the corresponding strain, 

derivative of the displacement, is continuous. 

The continuity of displacements between elements and at material interfaces is 

defined as C0 displacement fields. Elements with continuities of the derivatives 

of the displacements are defined by C1 continuous elements. It is apparent that 

elements with C1 displacement compatibility cannot be used at material 

interfaces.  Therefore, the rotations, as defined by Equations 2.4 are not 

continuous at material interfaces.  

2.8 INTERFACE EQUATIONS IN FINITE ELEMENT SYSTEMS 

In the case of a finite element system in which the equilibrium and compatibility 

equations are satisfied only at node points along the interface, the fundamental 

equilibrium equations can be written as:  

0=+ nn FF  (2.7a) 

0=+ ss FF  (2.7b) 

0=+ tt FF  (2.7c) 

Each node on the interface between elements has a unique set of displacements; 

therefore, compatibility at the interface is satisfied at a finite number of points. 

As the finite element mesh is refined, the element stresses and strains approach 

the equilibrium and compatibility requirements given by Equations (2.6a) to 

(2.6f). Therefore, each element in the structure may have different material 

properties; and, special interface equations are required at material interfaces.    

The discussion in this Chapter to this point applies to three-dimensional elastic 

solids only.  In addition, it clearly indicates the difference between classical 

elasticity and the modern finite element method exactly satisfy equilibrium as the 

mesh is refined. Also, in my opinion, it is prove that displacement compatible 

finite element solutions will converge to the exact elasticity solution as the mesh 

is refined.  
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2.9 NODE ROTATIONS IN FINITE ELEMENT SYSTEMS 

Gustave Kirchhoff (1824-1887) [3], in a paper on the theory of thin plates, 

introduced the following approximation: under small deflections, each line 

which is initially perpendicular to the middle plane of the plate remains 

straight during bending and normal to the middle surface of the deflected 

plate.  In modern structural analysis the normal rotations of the normal line are 

the two unknown node rotations.  However, if shearing deformations are 

included the plate, beam or shell element the average normal line rotation is not 

the same as the rotations of the middle surface of the plate.   

The membrane formulation for the plate and shell elements, as presented in 

Chapters 9 and 10, introduces a normal node rotation in order to allow more 

flexibility in the connection of complex beam, plate and shell elements to model 

the three-dimensional behavior of complex structural systems.  However, at the 

intersection of elements of different materials or thicknesses, great care must be 

taken to impose the appropriate interface continuity conditions.  For example, 

Appendix K illustrates how to model the behavior of a horizontal floor slab with 

a vertical shear wall..   

2.10 STATICALLY DETERMINATE STRUCTURES 

The internal forces of some structures can be determined directly from the 

equations of equilibrium only. For example, the truss structure shown in Figure 

2.2 will be analyzed to illustrate that the classical "method of joints" is nothing 

more than solving a set of equilibrium equations. 
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Figure 2.2 Simple Truss Structure 

Positive external node loads and node displacements are shown in Figure 2.3. 

Member forces if  and deformations id are positive in tension.  

Figure 2.3 Definition of Positive Joint Forces and Node Displacements 

Equating two external loads, jR , at each joint to the sum of the internal member 

forces, if , (see Appendix B for details) yields the following seven equilibrium 

equations written as one matrix equation: 
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 (2.8) 

Or, symbolically:   

AfR=  (2.9) 

where A  is a load-force transformation matrix and is a function of the geometry 

of the structure only. For this statically determinate structure, we have seven 

unknown element forces and seven joint equilibrium equations; therefore, the 

above set of equations can be solved directly for any number of joint load 

conditions. If the structure had one additional diagonal member, there would be 

eight unknown member forces, and a direct solution would not be possible 

because the structure would be statically indeterminate.  The major purpose of 

this example is to express the well-known traditional method of analysis 

("method of joints") in matrix notation. 

2.11 DISPLACEMENT TRANSFORMATION MATRIX 

After the member forces have been calculated, there are many different 

traditional methods to calculate joint displacements. Again, to illustrate the use of 

matrix notation, the member deformations id  will be expressed in terms of joint 

displacements ju . Consider a typical truss element as shown in Figure 2.4.  
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Figure 2.4 Typical Two-Dimension Truss Element 

 The axial deformation of the element can be expressed as the sum of the axial 

deformations resulting from the four displacements at the two ends of the 

element. The total axial deformation written in matrix form is: 
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Application of Equation (2.10) to all members of the truss shown in Figure 2.3 

yields the following matrix equation: 
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Or, symbolically: 

uBd =  (2.12) 

The element deformation-displacement transformation matrix, B, is a function of 

the geometry of the structure. Of greater significance, however, is the fact that 

the matrix B is the transpose of the matrix A defined by the joint equilibrium 

Equation (2.8). Therefore, given the element deformations within this statically 

determinate truss structure, we can solve Equation (2.11) for the joint 

displacements.  

2.12 ELEMENT STIFFNESS AND FLEXIBILITY MATRICES 

The forces in the elements can be expressed in terms of the deformations in the 

elements using the following matrix equations: 

dkf =        or,  fkd
1−=  (2.13) 

The element stiffness matrix k is diagonal for this truss structure, where the 

diagonal terms are 
i

ii
ii

L

EA
k =  and all other terms are zero. The element 

flexibility matrix is the inverse of the stiffness matrix, where the diagonal terms 

are 
ii

i

EA

L
. It is important to note that the element stiffness and flexibility 

matrices are only a function of the mechanical properties of the elements.  

2.13 SOLUTION OF STATICALLY DETERMINATE SYSTEM 

The three fundamental equations of structural analysis for this simple truss 

structure are equilibrium, Equation (2.8); compatibility, Equation (2.11); and 

force-deformation, Equation (2.13).  For each load condition R, the solution steps 

can be summarized as follows: 

1. Calculate the element forces from Equation (2.8). 
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2. Calculate element deformations from Equation (2.13). 

3. Solve for joint displacements using Equation (2.11). 

All traditional methods of structural analysis use these basic equations. However, 

before the availability of inexpensive digital computers that can solve over 100 

equations in less than one second, many special techniques were developed to 

minimize the number of hand calculations. Therefore, at this point in time, there 

is little value to summarize those methods in this book on the static and dynamic 

analysis of structures. 

2.14 GENERAL SOLUTION OF STRUCTURAL SYSTEMS 

In structural analysis using digital computers, the same equations used in 

classical structural analysis are applied. The starting point is always joint 

equilibrium. Or, fAR = . From the element force-deformation equation, 

dkf = , the joint equilibrium equation can be written as dkAR = . From the 

compatibility equation, uBd = , joint equilibrium can be written in terms of joint 

displacements as uBkAR = . Therefore, the general joint equilibrium can be 

written as: 

uKR =  (2.14) 

The global stiffness matrix K is given by one of the following matrix equations: 

BkAK =  or T
AkAK =  or  BkBK

T=   (2.15) 

It is of interest to note that the equations of equilibrium or the equations of 

compatibility can be used to calculate the global stiffness matrix K. 

The standard approach is to solve Equation (2.14) for the joint displacements and 

then calculate the member forces from: 

uBkf =  or  uAkf
T=  (2.16) 
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It should be noted that within a computer program, the sparse matrices 

KkBA  and ,,  are never formed because of their large storage requirements. The 

symmetric global stiffness matrix K is formed and solved in condensed form.  

2.15 SUMMARY 

Internal member forces and stresses must be in equilibrium with the applied loads 

and displacements. All real structures satisfy this fundamental law of physics. 

Hence, our computer models must satisfy the same law. 

At material interfaces, all stresses and strains are not continuous. Computer 

programs that average node stresses at material interfaces produce plot stress 

contours that are continuous; however, the results will not converge and 

significant errors can be introduced by this approximation. 

Compatibility conditions, which require that all elements attached to a rigid joint 

have the same displacement, are fundamental requirements in structural analysis 

and can be physically understood. Satisfying displacement compatibility involves 

the use of simple equations of geometry. However, the compatibility equations 

have many forms, and most engineering students and many practicing engineers 

can have difficulty in understanding the displacement compatibility requirement. 

Some of the reasons we have difficulty in the enforcement of the compatibility 

equations are the following: 

1. The displacements that exist in most linear structural systems are small 

compared to the dimensions of the structure. Therefore, deflected shape 

drawing must be grossly exaggerated to write equations of geometry. 

2. For structural systems that are statically determinate, the internal member 

forces and stresses can be calculated exactly without the use of the 

compatibility equations. 

3. Many popular (approximate) methods of analysis exist that do not satisfy the 

displacement compatibility equations. For example, for rectangular frames, 

both the cantilever and portal methods of analysis assume the inflection 

points to exist at a predetermined location within the beams or columns; 

therefore, the displacement compatibility equations are not satisfied. 
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4. Many materials, such as soils and fluids, do not satisfy the compatibility 

equations. Also, locked in construction stresses, creep and slippage within 

joints are real violations of displacement compatibility. Therefore, 

approximate methods that satisfy statics may produce more realistic results 

for the purpose of design. 

5. In addition, engineering students are not normally required to take a course in 

geometry; whereas, all students take a course in statics. Hence, there has not 

been an emphasis on the application of the equations of geometry. 

The relaxation of the displacement compatibility requirement has been justified 

for hand calculation to minimize computational time. Also, if one must make a 

choice between satisfying the equations of statics or the equations of geometry, 

in general, we should satisfy the equations of statics for the reasons previously 

stated. 

However, because of the existence of inexpensive powerful computers and 

efficient modern computer programs, it is not necessary to approximate the 

compatibility requirements. For many structures, such approximations can 

produce significant errors in the force distribution in the structure in addition to 

incorrect displacements. 
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APPENDIX H 

SPEED OF COMPUTER SYSTEMS 

                   The Current Speed of a $2,000 Personal Computer 

is Faster than the $10,000,000 Cray Computer of 1975 

INTRODUCTION 

The calculation of element stiffness matrices, solution of equations and evaluation 

of mode shapes and frequencies are all computationally intensive. Furthermore, it is 

necessary to use double-precision floating-point arithmetic to avoid numerical errors. 

Therefore, all numbers must occupy 64 bits of computer storage. The author started 

developing structural analysis and design programs on the IBM-701 in 1957 and since 

that time has been exposed to a large number of different computer systems. In this 

appendix the approximate double-precision floating-point performances of some of 

those computer systems are summarized. Because different FORTRAN compilers and 

operating systems were used, the speeds presented can only be considered accurate to 

within 50 percent. 

DEFINITION OF ONE 

NUMERICAL 

OPERATION 

For the purpose of comparing floating-point speeds, the evaluation of the 

following equation is defined as one operation: 

A  =  B  +  C * D        Definition of one numerical operation 
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Using double precision arithmetic, the definition involves the sum of one 

multiplication, one addition, extracting three numbers from high-speed storage, and 

transferring the results to storage. In most cases, this type of operation is within the 

inner DO LOOP for the solution of linear equations and the evaluation of mode 

shapes and frequencies. 

SPEED OF 

DIFFERENT 

COMPUTER 

SYSTEMS 

Table H.1 indicates the speed of different computers used by the author.  

 

 Table H.1 Floating-Point Speeds of Computer Systems 

Year 
Computer 

or CPU 

Operation

s 

Per 

Second 

Relativ

e 

Speed 

1963 CDC-6400 50,0

00 

 1  

1967 CDC-6600 100,

000 

 2  

1974 CRAY-1 3,00

0,00

0 

 6

0 

 

1980 VAX-780 60,0

00 

 1.2  

1981 IBM-3090 20,0

00,0

00 

 4

0

0 
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Year 
Computer 

or CPU 

Operation

s 

Per 

Second 

Relativ

e 

Speed 

1981 CRAY-XMP 40,0

00,0

00 

 8

0

0 

 

1990 DEC-5000 3,50

0,00

0 

 7

0 

 

1994 Pentium-90 3,50

0,00

0 

 7

0 

 

1995 Pentium-133 5,20

0,00

0 

 1

0

4 

 

1995 DEC-5000 

upgrade 

14,0

00,0

00 

 2

8

0 

 

1998 Pentium II - 

333 

37,5

00,0

00 

 7

5

0 

 

1999 Pentium III - 

450 

69,0

00,0

00 

 1

,

3

8

0 

 

If one considers the initial cost and maintenance of the various computer systems, it 

is apparent that the overall cost of engineering calculations has reduced significantly 

during the past several years. The most cost effective computer system at the present 

time is the INTEL Pentium III type of personal computer system. At the present time, 
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a very powerful personal computer system that is 25 times faster than the first CRAY 

computer, the fastest computer made in 1974, can be purchased for approximately 

$1,500. 

SPEED OF 

PERSONAL 

COMPUTER 

SYSTEMS 

Many engineers do not realize the computational power of the present day inexpensive personal computer. Table H.2 

indicates the increased speed of personal computers that has occurred during the past 18 years.  

 Table H.2 Floating-Point Speeds of Personal Computer Systems 

YE

AR 

INTE

L 

CPU 

S

p

e

e

d 

M

H

z 

Ope

ratio

ns 

Per 

Sec

ond 

R

el

at

iv

e 

S

p

e

e

d 

C

O

S

T 

19

80 

8080 4 200 1 $

6

,

0

0

0 

19

84 

8087 1

0 

13,0

00 

6

5 

$

2

,

5
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0

0 

19

88 

8038

7 

2

0 

93,0

00 

4

6

5 

$

8

,

0

0

0 

19

91 

8048

6 

3

3 

605,

000 

3,

0

2

5 

$

1

0

,

0

0

0 

19

94 

8048

6 

6

6 

1,21

0,00

0 

6,

0

5

0 

$

5

,

0

0

0 

19

95 

Penti

um 

9

0 

4,00

0,00

0 

2

6,

0

0

0 

$

5

,

0

0

0 

19

96 

Penti

um 

2

3

3 

10,3

00,0

00 

5

2,

0

0

0 

$

4

,

0

0

0 
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19

97 

Penti

um II 

2

3

3 

11,5

00,0

00 

5

8,

0

0

0 

$

3

,

0

0

0 

19

98 

Penti

um II 

3

3

3 

37,5

00,0

00 

1

9

8,

0

0

0 

$

2

,

5

0

0 

19

99 

Penti

um 

III 

4

5

0 

69,0

00,0

00 

3

4

5,

0

0

0 

$

1

,

5

0

0 

 

One notes that the floating-point speed of the Pentium III is significantly different 

from the Pentium II chip. The increase in clock speed, from 333 to 450 MHz, does not 

account for the increase in speed. 

PAGING OPERATING 

SYSTEMS 

The above computer speeds assume all numbers are in high-speed memory. For 

the analysis of large structural systems, it is not possible to store all information within 

high-speed storage. If data needs to be obtained from low-speed disk storage, the 

effective speed of a computer can be reduced significantly. Within the SAP and 

ETABS programs, the transfer of data to and from disk storage is conducted in large 

blocks to minimize disk access time. That programming philosophy was used before 

introduction of the paging option used in the modern Windows operating systems. 



2-22 STATIC AND DYNAMIC ANALYSIS 

 

 

In a paging operating system, if the data requested is not stored in high-speed 

memory, the computer automatically reads the data from disk storage in 

relatively small blocks of information. Therefore, the modern programmer need 

not be concerned with data management. However, there is a danger in the 

application of this approach. The classical example that illustrates the problem 

with paging is adding two large matrices together. The FORTRAN statement can 

be one of the following forms: 

 

    DO 100 J=1,NCOL   DO 100 I=1,NROW 

    DO 100 I=1,NROW   DO 100 J=1,NCOL 

100 A(I,J)=B(I,J)+C(I,J)  100A(I,J)=B(I,J)+C(I,J) 

 

Because all arrays are stored row-wise, the data will be paged to and from disk storage in the same order as needed by 

the program statements on the left. However, if the program statements on the right are used, the computer may be 

required to read and write blocks of data to the disk for each term in the matrix. Hence, the computer time required 

for this simple operation can be very large if paging is automatically used.  

SUMMARY 

Personal computers will continue to increase in speed and decrease in price. It is 

the opinion of many experts in the field that the only way significant increases in 

speed will occur is by the addition of multi-processors to personal computer systems. 

The NT operating system supports the use of multi-processors. However, the free 

LINUX operating system has proven faster for many functions. 

 


