
 

 

19. 

LINEAR VISCOUS DAMPING 
Linear Viscous Damping  

Is a Property of the Computational Model 
 And is not a Property of a Real Structure  

19.1 INTRODUCTION 

{ XE "Viscous Damping" }In structural engineering, viscous velocity-dependent 
damping is very difficult to visualize for most real structural systems. Only a 
small number of structures have a finite number of damping elements where real 
viscous dynamic properties can be measured. In most cases modal damping ratios 
are used in the computer model to approximate unknown nonlinear energy 
dissipation within the structure. 

{ XE "Damping:Rayleigh" }{ XE "Rayleigh Damping" }Another form of 
damping, referred to as Rayleigh damping, is often used in the mathematical 
model for the simulation of the dynamic response of a structure; Rayleigh 
damping is proportional to the stiffness and mass of the structure. Both modal 
and Rayleigh damping are used to avoid the need to form a damping matrix 
based on the physical properties of the real structure. 

In recent years, the addition of energy dissipation devices to the structure has 
forced the structural engineer to treat the energy dissipation in a more exact 
manner. However, the purpose of this chapter is to discuss the limitations of 
modal and Rayleigh damping.  
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19.2 ENERGY DISSIPATION IN REAL STRUCTURES 

It is possible to estimate an “effective or approximate” viscous damping ratio 
directly from laboratory or field tests of structures. One method is to apply a 
static displacement by attaching a cable to the structure and then suddenly 
removing the load by cutting the cable. If the structure can be approximated by a 
single degree of freedom, the displacement response will be of the form shown in 
Figure 19.1. For multi degree of freedom structural systems, the response will 
contain more modes and the analysis method required to predict the damping 
ratios will be more complex. 

It should be noted that the decay of the typical displacement response only 
indicates that energy dissipation is taking place. The cause of the energy 
dissipation may be from many different effects such as material damping, joint 
friction and radiation damping at the supports. However, if it is assumed that all 
energy dissipation is the result of linear viscous damping, the free vibration 
response is given by the following equation: 
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Figure 19.1 Free Vibration Test of Real Structures, Response vs. Time 

Equation (19.1) can be evaluated at any two maximum points "m cycles" apart 
and the following two equations are produced: 
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{ XE "Algorithms for:Evaluation of Damping" }The ratio of these two equations 
is: 
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{ XE "Damping:Decay Ratio" }Taking the natural logarithm of this decay ratio, 
mr , and rewriting produces the following equation: 
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This equation can be written in iterative form as: 

   2
)1(0)( 1 −ξ−ξ=ξ ii  (19.5b) 

If the decay ratio equals 0.730 between two adjacent maximums, three iterations 
yield the following damping ratio to three significant figures: 

0500.00500.00501.0 =≈≈ξ  

{ XE "Damping:Classical Damping" }The damping value obtained by this 
approach is often referred to as effective damping. Linear modal damping is also 
referred to as classical damping. However, it must be remembered that it is an 
approximate value and is based on many assumptions.  

Another type of energy dissipation that exists in real structures is radiation 
damping at the supports of the structure. The vibration of the structure strains the 
foundation material near the supports and causes stress waves to radiate into the 
infinite foundation. This can be significant if the foundation material is soft 
relative to the stiffness of the structure. The presence of a spring, damper and 
mass at each support often approximates this type of damping. 
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19.3 PHYSICAL INTERPRETATION OF VISCOUS DAMPING 

The strain energy stored within a structure is proportional to the displacement 
squared. Hence, the amount of energy that is dissipated during each cycle of free 
vibration can be calculated for various damping ratios, as summarized in Table 
19.1. In addition, Table 19.1 shows the number of cycles required to reduce the 
initial response by a factor of 10. 

{ XE "Damping:Energy Loss Per Cycle" }Table 19.1 Energy Loss Per Cycle 
for Different Damping Ratios 

Damping 
Ratio 

Percentage 

Decay Ratio 

21

2
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= er  

Percentage Energy 
Loss Per Cycle  

100 ( 21 r− ) 

Number of Cycles to 
Damp Response by a 

Factor of 10  
)ln(/)10.0ln( rn =  

1 0.939 11.8 36.6 

5 0.730 46.7 7.3 

10 0.532 71.7 3.6 

20 0.278 92.3 1.8 

30 0.139 98.1 1.2 

A 5 percent damping ratio indicates that 46.7 percent of the strain energy is 
dissipated during each cycle. If the period associated with the mode is 0.05 
seconds, the energy is reduced by a factor of 10 in 0.365 second. Therefore, a 5 
percent modal damping ratio produces a significant effect on the results of a 
dynamic response analysis. 

Field testing of real structures subjected to small displacements indicates typical 
damping ratios are less than 2 percent. Also, for most structures, the damping is 
not linear and is not proportional to velocity. Consequently, values of modal 
damping over 5 percent are difficult to justify. However, it is often common 
practice for structural engineers to use values over 10 percent.  
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19.4 MODAL DAMPING VIOLATES DYNAMIC EQUILIBRIUM 

{ XE "Damping:Experimental Evaluation" }{ XE "Damping:Equilibrium 
Violation" }For multi degree of freedom systems, the use of modal damping 
violates dynamic equilibrium and the fundamental laws of physics. For example, 
it is possible to calculate the reactions as a function of time at the base of a 
structure using the following two methods: 

First, the inertia forces at each mass point can be calculated in a specific direction 
by multiplying the absolute acceleration in that direction times the mass at the 
point. In the case of earthquake loading, the sum of all these forces must be equal 
to the sum of the base reaction forces in that direction because no other forces act 
on the structure. 

Second, the member forces at the ends of all members attached to reaction points 
can be calculated as a function of time. The sum of the components of the 
member forces in the direction of the load is the base reaction force experienced 
by the structure. 

In the case of zero modal damping, those reaction forces, as a function of time, 
are identical. However, for nonzero modal damping, those reaction forces are 
significantly different. These differences indicate that linear modal damping 
introduces external loads that are acting on the structure above the base and are 
physically impossible. This is clearly an area where the standard “state-of-the-
art” assumption of modal damping needs to be re-examined and an alternative 
approach developed. 

Energy dissipation exists in real structures. However, it must be in the form of 
equal and opposite forces between points within the structure. Therefore, a 
viscous damper, or any other type of energy dissipating device, connected 
between two points within the structure is physically possible and will not cause 
an error in the reaction forces. There must be zero base shear for all internal 
energy dissipation forces. 
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19.5 NUMERICAL EXAMPLE 

To illustrate the errors involved in the use of modal damping, a simple seven-
story building was subjected to a typical earthquake motion. Table 19.2 indicates 
the values of base shear calculated from the external inertia forces, which satisfy 
dynamic equilibrium, and the base shear calculated from the exact summation of 
the shears at the base of the three columns. 

It is of interest to note that the maximum values of base shear calculated from 
two different methods are significantly different for the same computer run. The 
only logical explanation is that the external damping forces exist only in the 
mathematical model of the structure. Because this is physically impossible, the 
use of standard modal damping can produce a small error in the analysis. 

Table 19.2 Comparison of Base Shear for Seven-Story Building 

Damping  
Percentage 

Dynamic Equilibrium 
Base Shear (kips) 

Sum of Column 
Shears (kips) 

Error 
Percentage 

0 370.7   @  5.355 Sec. 370.7   @  5.355 Sec.    0.0 

2 314.7   @  4.690 Sec 318.6   @  4.695 Sec  +1.2 

5 253.7   @  4.675 Sec 259.6   @  4.690 Sec  +2.3 

10 214.9   @  3.745 Sec 195.4   @  4.035 Sec   -9.1 

20 182.3   @  3.055 Sec 148.7   @  3.365 Sec -18.4 

It is of interest to note that the use of only 5 percent damping reduces the base 
shear from 371 kips to 254 kips for this example. Because the measurement of 
damping in most real structures has been found to be less than 2 percent, the 
selection of 5 percent reduces the results significantly. 

19.6 STIFFNESS AND MASS PROPORTIONAL DAMPING 

A very common type of damping used in the nonlinear incremental analysis of 
structures is to assume that the damping matrix is proportional to the mass and 
stiffness matrices. Or: 

KMC δ+η=   (19.6) 
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{ XE "Damping:Rayleigh" }{ XE "Rayleigh Damping" }This type of damping is 
normally referred to as Rayleigh damping. In mode superposition analysis, the 
damping matrix must have the following properties in order for the modal 
equations to be uncoupled: 
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Because of the orthogonality properties of the mass and stiffness matrices, this 
equation can be rewritten as: 
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It is apparent that modal damping can be specified exactly at only two 
frequencies, i and j , to solve for η  and δ  in the following equation: 
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{ XE "Damping:Stiffness Proportional" }For the typical case, the damping is set 
to be equal at the two frequencies; therefore ξ=ξ=ξ ji  and the proportionality 

factors are calculated from: 

δωω=η
ω+ω
ξ

=δ ji
ji

    and      2  (19.10) 

{ XE "Damping:Mass Proportional" }The assumption of mass proportional 
damping implies the existence of external supported dampers that are physically 
impossible for a base supported structure. The use of stiffness proportional 
damping has the effect of increasing the damping in the higher modes of the 
structure for which there is no physical justification. This form of damping can 
result in significant errors for impact- type problems and earthquake 
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displacement input at the base of a structure. Therefore, the use of Rayleigh-type 
damping is difficult to justify for most structures. However, it continues to be 
used within many computer programs to obtain numerical results using large time 
integration steps. 

19.7 CALCULATION OF ORTHOGONAL DAMPING MATRICES 

{ XE "Orthogonal Damping Matrices" }In Chapter 13, the classical damping 
matrix was assumed to satisfy the following orthogonality relationship: 

dC  =  T ΦΦ   where nnωξ2dnn =  and mndnm ≠= for      0  (19.11) 

In addition, the mode shapes are normalized so that IM  =  T ΦΦ . The following 
matrix can be defined: 

   MΦ=Φ     and      T TΦ=Φ M  (19.12) 

Hence, if Equation 19.11 is pre-multiplied by Φ and post-multiplied by Φ T , the 
following damping matrix is obtained: 
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Therefore, a classical damping matrix can be calculated for each mode that has a 
specified amount of damping in that mode and zero damping in all other modes:  

MMC T
nnnnn φφωξ2 =  (19.14) 

It must be noted that this modal damping matrix is a mathematical definition and 
that it is physically impossible for such damping properties to exist in a real multi 
degree of freedom structure. 

The total damping matrix for all modes can be written as:  
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It is apparent that given the mode shapes, a full damping matrix can be 
constructed from this mathematical equation. However, the resulting damping 
matrix may require that external dampers and negative damping elements be 
connected between nodes of the computer model. 

The only reason to form such a damping matrix is to compare the results of a 
step-by-step integration solution with a mode superposition solution. A 
numerical example is given in reference [1]. 

19.8 STRUCTURES WITH NON-CLASSICAL DAMPING 

{ XE "Damping:Nonlinear" }It is possible to model structural systems with linear 
viscous dampers at arbitrary locations within a structural system. The exact 
solution involves the calculation of complex eigenvalues and eigenvectors and a 
large amount of computational effort. Because the basic nature of energy 
dissipation is not clearly defined in real structures and viscous damping is often 
used to approximate nonlinear behavior, this increase in computational effort is 
not justified given that we are not solving the real problem. A more efficient 
method to solve this problem is to move the damping force to the right-hand side 
of the dynamic equilibrium equation and solve the problem as a nonlinear 
problem using the FNA method. Also, nonlinear viscous damping can easily be 
considered by this new computational method. 

19.9 NONLINEAR ENERGY DISSIPATION 

Most physical energy dissipation in real structures is in phase with the 
displacements and is a nonlinear function of the magnitude of the displacements. 
Nevertheless, it is common practice to approximate the nonlinear behavior with 
an “equivalent linear damping” and not conduct a nonlinear analysis. The major 
reason for this approximation is that all linear programs for mode superposition 
or response spectrum analysis can consider linear viscous damping in an exact 
mathematical manner. This approximation is no longer necessary if the structural 
engineer can identify where and how the energy is dissipated within the 
structural system. The FNA method provides an alternative to the use of 
equivalent linear viscous damping.  
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{ XE "Gap-Crush Element" }Base isolators are one of the most common types of 
predefined nonlinear elements used in earthquake resistant designs. Mechanical 
dampers, friction devices and plastic hinges are other types of common nonlinear 
elements. In addition, gap elements are required to model contact between 
structural components and uplifting of structures. A special type of gap element, 
with the ability to crush and dissipate energy, is useful to model concrete and soil 
types of materials. Cables that can take tension only and dissipate energy in 
yielding are necessary to capture the behavior of many bridge type structures. 
However, when a nonlinear analysis is conducted where energy is dissipated 
within the nonlinear devices, one cannot justify adding an additional 5 percent of 
linear modal damping  

19.10 SUMMARY 

The use of linear modal damping as a percentage of critical damping has been 
used to approximate the nonlinear behavior of structures. The energy dissipation 
in real structures is far more complicated and tends to be proportional to 
displacements rather than proportional to the velocity. The use of approximate 
“equivalent viscous damping” has little theoretical or experimental justification 
and produces a mathematical model that violates dynamic equilibrium.  

One can mathematically create damping matrices to have different damping in 
each mode. In addition, one can use stiffness and mass proportional damping 
matrices. To justify these convenient mathematical assumptions, field 
experimental work must be conducted. 

It is now possible to accurately simulate, using the FNA method, the behavior of 
structures with a finite number of discrete energy dissipation devices installed. 
The experimentally determined properties of the devices can be directly 
incorporated into the computer model. 

Please note, no reference to complex mode shapes has been made in this 
Chapter. Complex mode shapes are a property of the mathematical equations that 
are used to approximately model the dynamic behavior of real structures.  
Complex mode shapes do not exist in real structures. What you can measure in a 
real structure, when it is subjected to dynamic loads, is a series of decaying 
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shapes that vary with time. The decaying of the amplitude of the shapes is due to 
energy dissipation caused by many different physical properties of the structure 
such as friction and nonlinear behavior.  

Complex mode shapes are only possible if the assumption of linear viscous 
damping is made. However, no one has ever created a device where the applied 
force is directly proportional to the measured velocity for all frequencies.  
Therefore, we can eliminate the requirement that it is necessary to learn complex 
variable analysis in order to perform accurate dynamic analysis of real 
structures.(12/10/13) 
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