
 

 

18. 

FAST NONLINEAR ANALYSIS 
The Dynamic Analysis of a Structure with a Small Number of 

Nonlinear Elements is Almost as Fast as a Linear Analysis 

18.1 INTRODUCTION 

{ XE "Fast Nonlinear Analysis Method" }{ XE "FNA Method" }The response of 
real structures when subjected to a large dynamic input often involves significant 
nonlinear behavior. In general, nonlinear behavior includes the effects of large 
displacements and/or nonlinear material properties. 

{ XE "P-Delta Effects" }The use of geometric stiffness and P-Delta analyses, as 
summarized in Chapter 11, includes the effects of first order large displacements. 
If the axial forces in the members remain relatively constant during the 
application of lateral dynamic displacements, many structures can be solved 
directly without iteration. 

{ XE "Large Strains" }The more complicated problem associated with large 
displacements, which cause large strains in all members of the structure, requires 
a tremendous amount of computational effort and computer time to obtain a 
solution. Fortunately, large strains very seldom occur in typical civil engineering 
structures made from steel and concrete materials. Therefore, the solution 
methods associated with the large strain problem will not be discussed in detail in 
this chapter. However, certain types of large strains, such as those in rubber base 
isolators and gap elements, can be treated as a lumped nonlinear element using 
the Fast Nonlinear Analysis (FNA) method presented in this chapter. 
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{ XE "Nonlinear Stress-Strain" }The more common type of nonlinear behavior is 
when the material stress-strain, or force-deformation, relationship is nonlinear. 
This is because of the modern design philosophy that “a well-designed structure 
should have a limited number of members which require ductility and that the 
failure mechanism be clearly defined.” Such an approach minimizes the cost of 
repair after a major earthquake. 

18.2 STRUCTURES WITH A LIMITED NUMBER OF NONLINEAR 
ELEMENTS 

{ XE "Buckling Analysis" }A large number of very practical structures have a 
limited number of points or members in which nonlinear behavior takes place 
when subjected to static or dynamic loading. Local buckling of diagonals, 
uplifting at the foundation, contact between different parts of the structures and 
yielding of a few elements are examples of structures with local nonlinear 
behavior. For dynamic loads, it is becoming common practice to add 
concentrated damping, base isolation and other energy dissipation elements. 
Figure 18.1 illustrates typical nonlinear problems. In many cases, those nonlinear 
elements are easily identified. For other structures, an initial elastic analysis is 
required to identify the nonlinear areas. 

In this chapter the FNA method is applied to both the static and dynamic analysis 
of linear or nonlinear structural systems. A limited number of predefined 
nonlinear elements are assumed to exist. Stiffness and mass orthogonal Load 
Dependent Ritz Vectors of the elastic structural system are used to reduce the 
size of the nonlinear system to be solved. The forces in the nonlinear elements 
are calculated by iteration at the end of each time or load step. The uncoupled 
modal equations are solved exactly for each time increment. 

Several examples are presented that illustrate the efficiency and accuracy of the 
method. The computational speed of the new FNA method is compared with the 
traditional “brute force” method of nonlinear analysis in which the complete 
equilibrium equations are formed and solved at each increment of load. For many 
problems, the new method is several magnitudes faster. 
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{ XE "Tension Only Element" }{ XE "Gap Element" }Figure 18.1 Examples of 
Nonlinear Elements 

18.3 FUNDAMENTAL EQUILIBRIUM EQUATIONS 

{ XE "Damping:Nonlinear" }{ XE "Nonlinear Equilibrium Equations" }The FNA 
method is a simple approach in which the fundamental equations of mechanic 
(equilibrium, force-deformation and compatibility) are satisfied. The exact force 
equilibrium of the computer model of a structure at time t is expressed by the 
following matrix equation: 
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(t)(t)(t)(t)(t) R = R + Ku + uC + uM NL&&&  (18.1) 

where   , CM and K  are the mass, proportional damping and stiffness matrices, 
respectively. The size of these three square matrices is equal to the total number 
of unknown node point displacements Nd. The elastic stiffness matrix K neglects 
the stiffness of the nonlinear elements. The time-dependent vectors 

(t)(t)(t) uuu  , , &&&  and (t)R  are the node point acceleration, velocity, displacement 
and external applied load, respectively. And NL(t)R is the global node force 
vector from the sum of the forces in the nonlinear elements and is computed by 
iteration at each point in time. 

{ XE "Effective Stiffness" }If the computer model is unstable without the 
nonlinear elements, one can add “effective elastic elements” (at the location of 
the nonlinear elements) of arbitrary stiffness. If these effective forces, )(tuK e , 
are added to both sides of Equation (1), the exact equilibrium equations can be 
written as:  

 uK RR  uKK + uC + uM ee (t)(t)(t)(t)(t)(t) +−=+ NL)(&&&  (18.2) 

where eK  is the effective stiffness of arbitrary value. Therefore, the exact 
dynamic equilibrium equations for the nonlinear computer model can be written 
as:  

 R  uK + uC + uM (t)(t)(t)(t) =&&&  (18.3) 

The elastic stiffness matrix K is equal to eKK + and is known. The effective 
external load )(tR  is equal to (t)(t)t uKRR e+− NL)( , which must be evaluated 
by iteration. If a good estimate of the effective elastic stiffness can be made, the 
rate of convergence may be accelerated because the unknown load term 

(t)(t) uK R e+− NL will be small. 

18.4 CALCULATION OF NONLINEAR FORCES 

At any time the L nonlinear deformations )(td  within the nonlinear elements are 
calculated from the following displacement transformation equation: 

(t)t bud =)(  (18.4) 
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Also, the rate of change with respect to time in the nonlinear deformations, )(td& , 
are given by:  

(t)t ubd && =)(  (18.5) 

Note that for small displacements, the displacement transformation matrix b  is 
not a function of time and is exact. The displacement transformation matrix b for 
a truss element is given by Equation (2.11). 

If the time-history deformations and velocities in all nonlinear elements are 
known, the nonlinear forces )(tf  in the nonlinear elements can be calculated 
exactly at any time from the nonlinear material properties of each nonlinear 
element. It is apparent that this can only be accomplished by iteration at each 
point in time. 

18.5 TRANSFORMATION TO MODAL COORDINATES 

The first step in the solution of Equation (18.3) is to calculate a set of N 
orthogonal Load Dependent Ritz vectors, Φ , which satisfy the following 
equations: 

I = M ΙΦΦT     and        2ΩΦΦ  =T K  (18.6a) and (18.6b) 

where I  is a unit matrix and Ω2  is a diagonal matrix in which the diagonal terms 
are defined as ω2

n . 

The response of the system can now be expressed in terms of those vectors by 
introducing the following matrix transformations: 

(t)(t)(t)(t)(t)(t) Y = u           Y = u        Y = u &&&&&& ΦΦΦ  (18.7) 

The substitution of those equations into Equation (18.1) and the multiplication of 
both sides of the equation by TΦ  yield a set of N uncoupled equations expressed 
by the following matrix equation: 

)()()()( ttt FYYYI 2 =Ω+Λ+ &&& t  (18.8) 
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in which the linear and nonlinear modal forces are given by: 

           = T
NL

TTT (t)(t)t(t)(t) uK RRRF eΦ+Φ−Φ=Φ )(  (18.9) 

The assumption that the damping matrix can be diagonalized is consistent with 
the classical normal mode superposition method in which damping values are 
assigned, in terms of percent of critical damping, at the modal level. The diagonal 
terms of the Λ  matrix are ωξ nn2 in which ξn  is the damping ratio for mode n. It 
should be noted that the forces associated with concentrated dampers at any 
location in the structure can be included as part of the nonlinear force vector. 

Also, if the number of LDR vectors used is equal to the total number of degrees 
of freedom Nd,, Equation 18.8 is exact at time t. Therefore, if very small time 
steps are used and iteration is used within each time step, the method converges 
to the exact solution. The use of LDR vectors significantly reduces the number of 
modes required.  

Because (t)(t) Yu Φ = , the deformations in the nonlinear elements can be 
expressed directly in terms of the modal coordinate as: 

(t)(t) BYd  =  (18.10) 

where the element deformation - modal coordinate transformation matrix is 
defined by: 

ΦbB  =  (18.11) 

It is very important to note that the L by N  B matrix is not a function of time and 
is relatively small in size; also, it needs to be calculated only once before 
integration of the modal equations. 

At any time, given the deformations and history of behavior in the nonlinear 
elements, the forces in the nonlinear elements f(t) can be evaluated from the basic 
nonlinear properties and deformation history of the element. From the basic 
principle of virtual work, the nonlinear modal forces are then calculated from: 

(t)(t) fBF T
NL  =  (18.12) 
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The effective elastic forces can also be rewritten as: 

)()( tt(t)(t) e
T dkBubkbuKF e =Φ=Φ e

TTT
e    =  (18.13) 

where ek  is the effective linear stiffness matrix in the local nonlinear element 
reference system.  

18.6 SOLUTION OF NONLINEAR MODAL EQUATIONS 

The calculation of the Load Dependent Vectors, without the nonlinear elements, 
is the first step before solving the modal equations. Also, the B deformation-
modeshape transformation matrix needs to be calculated only once before start of 
the step-by-step solution phase. A typical modal equation is of the form: 

nnn
2

nnnn (t)f  y(t)  (t)y2  (t)y =ω+ωξ+ &&&  (18.14) 

where n(t)f  is the modal load and for nonlinear elements is a function of all other 

modal responses at the same point in time. Therefore, the modal equations must 
be integrated simultaneously and iteration is necessary to obtain the solution of 
all modal equations at time t. The exact solution of the modal equations for a 
linear or cubic variation of load within a time step is summarized by Equation 
(13.13) and is in terms of exponential, square root, sine and cosine functions. 
However, those computational intensive functions, given in Table 13.2, are pre-
calculated for all modes and used as constants for the integration within each 
time step. In addition, the use of the exact piece-wise integration method allows 
the use of larger time steps. 

The complete nonlinear solution algorithm, written in iterative form, is 
summarized in Table 18.1. 
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{ XE "Algorithms for:Fast Nonlinear Analysis" }Table 18.1 Summary of 
Nonlinear Solution Algorithm 

I   INITIAL CALCULATION - BEFORE STEP-BY-STEP SOLUTION 

1. Calculate N Load Dependent Ritz vectorsΦ for the structure without the 
nonlinear elements. These vectors have Nd displacement DOF. 

2. Calculate the L by N B matrix. Where L is the total number of DOF within 
all nonlinear elements. 

3. Calculate integration constants −−−1A  for the piece-wise exact 
integration of the modal equations for each mode. 

II  NONLINEAR SOLUTION at times --------t 3 t,2 t, ∆∆∆  

1. Use Taylor series to estimate solution at time t . 

)t-(t
2
t + )t-(tt + )t-(t = )(t ∆

∆
∆∆∆ YYYY &&&  

)t-(tt + t)-(t = )(t ∆∆∆ YYY &&&&  

2. For iteration i, calculate L nonlinear deformations and velocities. 

)(t = )(t ii BYd         and            )(t = )(t ii YBd &&  

3. Based on the deformation and velocity histories in nonlinear elements, 
calculate L nonlinear forces )(t if . 

4. Calculate new modal force vector )]([ t)(t - (t) = )(t e
ii dkfBFF T −  

5. Use piece-wise exact method to solve modal equations for next iteration. 

 )(t , )(t , )(t iii YYY &&&  

6. Calculate error norm:          
|)(tf|

|)(tf| - |)(tf|
  =Err 

i
n

N

1=n

1-i
n

N

1=n

i
n

N

1=n

∑

∑∑
 

7. Check Convergence – where the tolerance, Tol , is specified.  

If Tol Err >  go to step 2   with  1 + i = i  

If Tol Err <  go to  step 1  with  t + t = t ∆  



FAST NONLINEAR ANALYSIS 18-9 

18.7 STATIC NONLINEAR ANALYSIS OF FRAME STRUCTURE 

The structure shown in Figure 18.2 is used to illustrate the use of the FNA 
algorithm for the solution of a structure subjected to both static and dynamic 
loads. It is assumed that the external columns of the seven-story frame structure 
cannot take axial tension or moment at the foundation level and the column can 
uplift. The axial foundation stiffness is 1,000 kips per inch at the external 
columns and 2,000 kips per inch at the center column. The dead load is 80 kips 
per story and is applied as concentrated vertical loads of 20 kips at the external 
columns and 40 kips at the center column. The static lateral load is specified as 
50 percent of the dead load. 
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k 2k k  

Figure 18.2 Properties of Frame Structure 

{ XE "Uplifting Frame" }For the purpose of calculating the dynamic response, 
the mass of the structure is calculated directly from the dead load. The 
fundamental period of the structure with the external columns not allowed to 
uplift is 0.708 seconds. The fundamental period of the structure allowing uplift is 
1.691 seconds. 
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The static load patterns used to generate the series of LDR vectors are shown in 
Figure 18.3. The first load pattern represents the mass-proportional lateral 
earthquake load. The second pattern represents the vertical dead load. The last 
two load patterns represent the possible contact forces that exist at the foundation 
of the external columns. It is very important that equal and opposite load patterns 
be applied at each point where a nonlinear element exists. These vectors allow 
for the accurate evaluation of member forces at the contact points. For this 
example, the vectors will not be activated in the solution when there is uplift at 
the base of the columns because the axial force must be zero. Also, the total 
number of Ritz vectors used should be a multiple of the number of static load 
patterns so that the solution is complete for all possible loadings. In addition, care 
should be taken to make sure that all vectors are linearly independent. 

 

Figure 18.3 Four Static Load Vectors Used in Analysis 

For this example, the dead load is applied at time zero and reaches its maximum 
value at one second, as shown in Figure 18.4. The time increment used is 0.10 
second. The modal damping ratios are set to 0.999 for all modes; therefore, the 
dynamic solution converges to the static solution in less than one second. The 
lateral load is applied at two seconds and reaches a maximum value at three 
seconds. At four seconds after 40 load increments, a static equilibrium position is 
obtained. 

It should be noted that the converged solution is the exact static solution for this 
problem because all possible combinations of the static vectors have been 
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included in the analysis. The magnitude of the mass, damping and the size of the 
time step used will not affect the value of the converged static solution. 

Figure 18.4 Application of Static Loads vs. Time 

It is of interest to note that it is impossible for a real structure to fail under static 
loads only, because at the point of collapse, inertia forces must be present. 
Therefore, the application of static load increments with respect to time is a 
physically realistic approach. The approximate static load response of the frame 
is shown in Figure 18.5. 

Figure 18.5 Column Axial Forces from “Static” Loads 
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18.8 DYNAMIC NONLINEAR ANALYSIS OF FRAME STRUCTURE 

The same frame structure that is defined in Figure 18.2 is subjected to Loma 
Prieta Earthquake ground motions recorded on the east side of the San Francisco 
Bay at a maximum acceleration of 20.1 percent of gravity and a maximum 
ground displacement of 5.81 inches. The acceleration record used was corrected 
to zero acceleration, velocity and displacement at the end of the record and is 
shown in Figure 18.6. 

0 1 2 3 4 5 6 7 8 9 10

TIME - seconds

-25

-20

-15

-10

-5

0

5

10

15

20

25

 

Figure 18.6 Segment of Loma Prieta Earthquake - Percent of Gravity 

The dead load was applied as a ramp function in the time interval 0 to 1 second. 
The lateral earthquake load is applied starting at 2 seconds. Sixteen Ritz vectors 
and a modal damping value of 5 percent were used in the analysis. The column 
axial forces as a function of time are shown in Figure 18.7. 
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Figure 18.7 Column Axial Forces from Earthquake Loading 

It is of considerable interest to compare the behavior of the building that is not 
allowed to uplift with the behavior of the same building that is allowed to uplift. 
These results are summarized in Table 18.2. 

Table 18.2. Summary of Results for Building Uplifting Problem from the Loma 
Prieta Earthquake ξ = 0 05.  

Uplift 

Max. 
Displace-

ment 
(inches) 

Max. 
Axial 
Force 
(kips) 

Max. 
Base 
Shear 
(kips) 

Max. 
Base 

Moment
(k-in) 

Max. 
Strain 
Energy 
(k-in) 

Compu-
tational 
Time 

(seconds) 

Without 3.88 542 247 212,000 447 14.6  
With 3.90 505 199 153,000 428 15 

Percent 
Difference +0.5 % -6.8% -19.4% -27.8% -4.2% +3% 

{ XE "Uplifting Frame" }The lateral displacement at the top of the structure has 
not changed significantly by allowing the external columns to uplift. However, 
allowing column uplifting reduces significantly the base shear, overturning 
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moment and strain energy stored in the structure. It is apparent for this structure, 
that uplifting is a “natural” base isolation system. This reduction of forces in a 
structure from uplifting has also been observed in shaking table tests. However, it 
has not been used extensively for real structures because of the lack of precedent 
and the inability of the design engineer to easily compute the dynamic behavior 
of an uplifting structure.  

For this small nonlinear example, there is a very small increase in computational 
time compared to a linear dynamic analysis. However, for a structural system 
with a large number of nonlinear elements, a large number of Ritz vectors may be 
required and the additional time to integrate the nonlinear modal equation can be 
significant. 

Table 18.3 presents a summary of the results if the same structure is subjected to twice 
the ground accelerations of the Loma Prieta earthquake. One notes that all significant 
response parameters are reduced significantly. 

Table 18.3 Summary of Results for Building Uplifting Problem from Two Times 
the Loma Prieta Earthquake -ξ = 0 05.  

Uplift 

Max. 
Displace-

ment 
(inches) 

Max. 
Column 
Force 
(kips) 

Max. 
Base 
Shear 
(kips) 

Max. 
Base 

Moment
(k-in) 

Max. 
Strain 
Energy
(k-in) 

Max. Uplift 
(inches) 

Without 7.76 924 494 424,000 1,547  

With 5.88 620 255 197,000 489  1.16 

Percent 
Difference -24% -33% -40% -53% -68%  

The maximum uplift at the base of the external columns is more than one inch; 
therefore, these may be ideal locations for the placement of additional energy 
dissipation devices such as viscous dampers. 

18.9 SEISMIC ANALYSIS OF ELEVATED WATER TANK 

A nonlinear earthquake response analysis of an elevated water tank was 
conducted using a well-known commercial computer program in which the 
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stiffness matrix for the complete structure was recalculated for each time step and 
equilibrium was obtained using iteration. The structural system and analysis had 
the following properties: 

 92 nodes with 236 unknown displacements 
 103 elastic frame elements 
 56 nonlinear diagonal brace elements - tension only 
 600 time steps at 0.02 seconds 

The solution times on two different computers are listed below: 
Intel 486 3 days 4,320 minutes 
Cray XMP-1 3 hours   180 minutes 

The same structure was solved using the FNA method presented in this chapter 
on an Intel 486 in less than 3 minutes. Thus, a structural engineer has the ability 
to investigate a large number of retrofit strategies within a few hours. 

18.10 SUMMARY 

It is common practice in engineering design to restrict the nonlinear behavior to a 
small number of predefined locations within a structure. In this chapter an 
efficient computational method has been presented to perform the static and 
dynamic analysis of these types of structural systems. The FNA method, using 
LDR vectors, is a completely different approach to structural dynamics. The 
nonlinear forces are treated as external loads and a set of LDR vectors is 
generated to accurately capture the effects of those forces. By iteration within 
each time step, equilibrium, compatibility and all element force-deformation 
equations within each nonlinear element are identically satisfied. The reduced set 
of modal equations is solved exactly for a linear variation of forces during a 
small time step. Numerical damping and integration errors from the use of large 
time steps are not introduced. 

{ XE "Effective Stiffness" }The computer model must be structurally stable 
without the nonlinear elements. All structures can be made stable if an element 
with an effective stiffness is placed parallel with the nonlinear element and its 
stiffness added to the basic computer model. The forces in this effective stiffness 
element are moved to the right side of the equilibrium equations and removed 
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during the nonlinear iterative solution phase. These dummy or effective stiffness 
elements will eliminate the introduction of long periods into the basic model and 
improve accuracy and rate of convergence for many nonlinear structures. 

It has been demonstrated that structures subjected to static loads can also be 
solved using the FNA method. It is only necessary to apply the loads slowly to a 
constant value and add large modal damping values. Therefore, the final 
converged solution will be in static equilibrium and will not contain inertia 
forces. It should be noted that it is necessary to use Load Dependent Vectors 
associated with the nonlinear degrees of freedom, and not the exact eigenvectors, 
if static problems are to be solved using this approach. 

The FNA method has been added to the commercial program ETABS for the 
analysis of building systems and the general purpose structural analysis program 
SAP2000. The ETABS program has special base isolation elements that are 
commonly used by the structural engineering profession. Those computer 
programs calculate and plot the total input energy, strain energy, kinetic energy 
and the dissipation of energy by modal damping and nonlinear elements as a 
function of time. In addition, an energy error is calculated that allows the user to 
evaluate the appropriate time step size. Therefore, the energy calculation option 
allows different structural designs to be compared. In many cases a good design 
for a specified dynamic loading is one that has a minimum amount of strain 
energy absorbed within the structural system. 

As in the case of normal linear mode superposition analysis, it is the 
responsibility of the user to check, using multiple analyses, that a sufficiently 
small time step and the appropriate number of modes have been used. This 
approach will ensure that the method will converge to the exact solution. 

Using the numerical methods presented in this chapter, the computational time 
required for a nonlinear dynamic analysis of a large structure, with a small number of 
nonlinear elements, can be only a small percentage more than the computational time 
required for a linear dynamic analysis of the same structure. This allows large 
nonlinear problems to be solved relatively quickly. 


