
 

 

16. 

SOIL STRUCTURE INTERACTION 
At a Finite Distance from a Structure,  

the Absolute Displacements  
Must Approach the Free-Field Displacements 

16.1 INTRODUCTION 

{ XE "Soil-Structure Interactions" }The estimation of earthquake motions at the 
site of a structure is the most important phase of the design or retrofit of a 
structure. Because of the large number of assumptions required, experts in the 
field often disagree, by more than a factor of two, about the magnitude of 
motions expected at the site without the structure present. This lack of accuracy 
about the basic input motions, however, does not justify the introduction of 
additional unnecessary approximations in the dynamic analysis of the structure 
and its interaction with the material under the structure. Therefore, it will be 
assumed that the free-field motions at the location of the structure, without the 
structure present, can be estimated and are specified in the form of earthquake 
acceleration records in three directions. It is now common practice, on major 
engineering projects, to investigate several different sets of ground motions to 
consider both near fault and far fault events. 

If a lightweight flexible structure is built on a very stiff rock foundation, a valid 
assumption is that the input motion at the base of the structure is the same as the 
free-field earthquake motion. This assumption is valid for a large number of 
building systems because most building type structures are approximately 90 
percent voids, and it is not unusual for the weight of the structure to be equal to 
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the weight of the soil excavated before the structure is built. However, if the 
structure is very massive and stiff, such as a concrete gravity dam, and the 
foundation is relatively soft, the motion at the base of the structure may be 
significantly different from the free-field surface motion. Even for this extreme 
case, however, it is apparent that the most significant interaction effects will be 
near the structure, and, at some finite distance from the base of the structure, the 
displacements will converge back to the free-field earthquake motion. 

16.2 SITE RESPONSE ANALYSIS 

{ XE "Site Response Analysis" }The 1985 Mexico City and many other recent 
earthquakes clearly illustrate the importance of local soil properties on the 
earthquake response of structures. These earthquakes demonstrated that the rock 
motions could be amplified at the base of a structure by over a factor of five. 
Therefore, there is a strong engineering motivation for a site-dependent dynamic 
response analysis for many foundations to determine the free-field earthquake 
motions. The determination of a realistic site-dependent free-field surface motion 
at the base of a structure can be the most important step in the earthquake 
resistant design of any structure. 

{ XE "SHAKE Program" }{ XE "WAVES Program" }For most horizontally 
layered sites, a one-dimensional pure shear model can be used to calculate the 
free-field surface displacements given the earthquake motion at the base of a soil 
deposit. Many special purpose computer programs exist for this purpose. SHAKE 
[1] is a well-known program that is based on the frequency domain solution 
method. SHAKE iterates to estimate effective linear stiffness and damping 
properties to approximate the nonlinear behavior of a site. WAVES [2] is a new 
nonlinear program in which the nonlinear equations of motion are solved using a 
direct step-by-step integration method. If the soil material can be considered 
linear, the SAP2000 program, using the SOLID element, can calculate either the 
one-, two- or three-dimensional free-field motions at the base of a structure. In 
addition, a one-dimensional nonlinear site analysis can be accurately conducted 
using the FNA option in the SAP2000 program. 
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16.3 KINEMATIC OR SOIL STRUCTURE INTERACTION 

The most common soil structure interaction (SSI) approach used for three-
dimensional soil structure systems is based on the "added motion" formulation 
[3]. This formulation is mathematically simple, theoretically correct, and is easy 
to automate and use within a general linear structural analysis program. In 
addition, the formulation is valid for free-field motions caused by earthquake 
waves generated from all sources. The method requires that the free-field 
motions at the base of the structure be calculated before the soil structure 
interactive analysis. 

To develop the fundamental SSI dynamic equilibrium equations, consider the 
three-dimensional soil structure system shown in Figure 16.1. 

 

Figure 16.1 Soil structure Interaction Model 

Consider the case where the SSI model is divided into three sets of node points. 
The common nodes at the interface of the structure and foundation are identified 
with “c”; the other nodes within the structure are “s” nodes; and the other nodes 
within the foundation are “f” nodes. From the direct stiffness approach in 

U = v +u
U = Absolute Displacements

v = Free Field Displacements

u = Added Displacements
u = 0

Added  Structure (s)

Soil Foundation System (f)

Common Nodes (c)
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structural analysis, the dynamic force equilibrium of the system is given in terms 
of the absolute displacements, U , by the following sub-matrix equation:   
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where the mass and the stiffness at the contact nodes are the sum of the 
contributions from the structure (s) and foundation (f), and are given by:  

)()()()( f
cc

s
cccc

f
cc

s
cccc KKKMMM +=+=    and    (16.2) 

{ XE "Free-Field Displacements" }In terms of absolute motion, there are no 
external forces acting on the system. However, the displacements at the boundary 
of the foundation must be known. To avoid solving this SSI problem directly, the 
dynamic response of the foundation without the structure is calculated. In many 
cases, this free-field solution can be obtained from a simple one-dimensional site 
model. The three-dimensional free-field solution is designated by the absolute 
displacements v  and absolute accelerations v&& . By a simple change of variables, 
it is now possible to express the absolute displacements U  and accelerations U&&  
in terms of displacements u  relative to the free-field displacements v . Or: 
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Equation (16.1) can now be written as  
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If the free-field displacement cv  is constant over the base of the structure, the 
term sv is the rigid body motion of the structure. Therefore, Equation (16.4) can 
be further simplified by the fact that the static rigid body motion of the structure 
is: 
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Also, the dynamic free-field motion of the foundation requires that: 
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Therefore, the right-hand side of Equation (16.4) can be written as: 
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Hence, the right-hand side of the Equation (16.4) does not contain the mass of 
the foundation. Therefore, three-dimensional dynamic equilibrium equations for 
the complete soil structure system with damping added are of the following form 
for a lumped mass system:  

)()()( ttt vm- vm- vm- = Ku + uC + uM zzyyxx &&&&&&&&&  (16.8) 

where M, C and K are the mass, damping and stiffness matrices, respectively, of 
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the soil structure model. The added relative displacements, u, exist for the soil 
structure system and must be set to zero at the sides and bottom of the 
foundation. The terms )()( tt v,v yx &&&&  and )(tvz&& are the free-field components of 
the acceleration if the structure is not present. The column matrices, mi , are the 
directional masses for the added structure only. 

Most structural analysis computer programs automatically apply the seismic 
loading to all mass degrees of freedom within the computer model and cannot 
solve the SSI problem. This lack of capability has motivated the development of 
the massless foundation model. This allows the correct seismic forces to be 
applied to the structure; however, the inertia forces within the foundation 
material are neglected. The results from a massless foundation analysis converge 
as the size of the foundation model is increased. However, the converged 
solutions may have avoidable errors in the mode shapes, frequencies and 
response of the system.  

To activate the soil structure interaction within a computer program, it is only 
necessary to identify the foundation mass so that the loading is not applied to that 
part of the structure. The program then has the required information to form both 
the total mass and the mass of the added structure. The SAP2000 program has 
this option and is capable of solving the SSI problem correctly. 

16.4 RESPONSE DUE TO MULTI-SUPPORT INPUT MOTIONS 

{ XE "Multi-Support Earthquake Motions" }The previous SSI analysis assumes 
that the free-field motion at the base of the structure is constant. For large 
structures such as bridges and arch dams, the free-field motion is not constant at 
all points where the structure is in contact with the foundation. 

The approach normally used to solve this problem is to define a quasi-static 
displacement cv  that is calculated from the following equation: 

csccscssscscsss vTvKKv0vKvK =−==+ −1    or,       (16.9a) 

The transformation matrix scT  allows the corresponding quasi-static acceleration 
in the structure to be calculated from: 
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cscs vTv &&&& =  (16.9b) 

Equation (16.4) can be written as: 
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After substitution of Equations (16.6) and (16.9), Equation (16.10) can be written 
as: 
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The reduced structural stiffness at the contact surface ccK is given by: 

sccscc TKKK +=cc  (16.12) 

Therefore, this approach requires a special program option to calculate the mass 
and stiffness matrices to be used on the right-hand side of the dynamic 
equilibrium equations. Note that the loads are a function of both the free-field 
displacements and accelerations at the soil structure contact. Also, to obtain the 
total stresses and displacements within the structure, the quasi-static solution 
must be added to the solution. At the present time, no general purpose structural 
analysis computer program is based on this “numerically cumbersome” approach. 

An alternative approach is to formulate the solution directly in terms of the 
absolute displacements of the structure. This involves the introduction of the 
following change of variables: 
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Substitution of this change of variables into Equation (16.1) yields the following 
dynamic equilibrium equations in terms of the absolute displacement, su , of the 
structure: 
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After the free-field response, Equation (16.6), has been removed, the dynamic 
loading is calculated from the following equation: 
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This equation can be further simplified by connecting the structure to the 
foundation with stiff massless springs that are considered as part of the structure. 
Therefore, the mass of the structure at the contact nodes is eliminated and 
Equation (16.15a) is reduced to: 
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It is apparent that the stiffness terms in Equation (16.15b) represent the stiffness 
of the contact springs only. Therefore, for a typical displacement component (n = 
x, y or z), the forces acting at point “i” on the structure and point “j” on the 
foundation are given by: 
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where nk is the massless spring stiffness in the nth direction and nv  is the free-

field displacement. Hence, points “i” and “j” can be at the same location in space 
and the only loads acting are a series of time-dependent, concentrated point loads 
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that are equal and opposite forces between the structure and foundation. The 
spring stiffness selected must be approximately three orders-of-magnitude greater 
than the stiffness of the structure at the connecting nodes. The spring stiffness 
should be large enough so the fundamental periods of the system are not 
changed, and small enough not to cause numerical problems. 

The dynamic equilibrium equations, with damping added, can be written in the 
following form: 

R=Ku + uC + uM &&&  (16.17) 

{ XE "LDR Vectors" }It should be noted that concentrated dynamic loads 
generally require a large number of eigenvectors to capture the correct response 
of the system. However, if LDR vectors are used in a mode superposition 
analysis, the required number of vectors is reduced significantly. The SAP2000 
program has the ability to solve the multi-support, soil structure interaction 
problems using this approach. At the same time, selective nonlinear behavior of 
the structure can be considered. 

16.5 ANALYSIS OF GRAVITY DAM AND FOUNDATION  

To illustrate the use of the soil structure interaction option, several earthquake 
response analyses of the Pine Flat Dam were conducted using different 
foundation models. The foundation properties were assumed to be the same 
properties as the dam. Damping was set at five percent. Ten Ritz vectors 
generated from loads on the dam only were used. However, the resulting 
approximate mode shapes used in the standard mode superposition analysis 
included the mass inertia effects of the foundation. The horizontal dynamic 
loading was the typical segment of the Loma Prieta earthquake defined in Figure 
15.1a. A finite element model of the dam on a rigid foundation is shown in 
Figure 16.2. 
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Figure 16.2 Finite Element Model of Dam Only 

The two different foundation models used are shown in Figure 16.3. 

 

Figure 16.3 Models of Dam with Small and Large Foundation  

Selective results are summarized in Table 16.1. For the purpose of comparison, it 
will be assumed that Ritz vector results for the large foundation mesh are the 
referenced values. 



SOIL STRUCTURE INTERACTION 16-11 

Table 16.1 Selective Results of Dam-Foundation Analyses 

Dam 
Foundation 

Total Mass  
(lb-sec2/in) 

Periods   
(seconds) 

Max. 
Displacement  

(inches) 

Max. & Min. 
Stress   
(ksi) 

None 1,870 0.335   0.158 0.65  -37  to  +383 

Small  13,250 0.404   0.210 1.28 -490  to  +289  

Large  77,360 0.455   0.371 1.31 -512  to  +297 

The differences between the results of the small and large foundation models are 
very close, which indicates that the solution of the large foundation model may 
be nearly converged. It is true that the radiation damping effects in a finite 
foundation model are neglected. However, as the foundation model becomes 
larger, the energy dissipation from normal modal damping within the massive 
foundation is significantly larger than the effects of radiation damping for 
transient earthquake-type loading.  

16.6 THE MASSLESS FOUNDATION APPROXIMATION 

{ XE "Massless Foundation Approximation" }Most general purpose programs for 
earthquake analysis of structures do not have the option of identifying the 
foundation mass as a separate type of mass on which the earthquake forces do not 
act. Therefore, an approximation that has commonly been used is to neglect the 
mass of the foundation completely in the analysis. Table 16.2 summarizes the 
results for an analysis of the same dam-foundation systems using a massless 
foundation. As expected, these results are similar. For this case the results are 
conservative; however, one cannot be assured of this for all cases. 



16-12 STATIC AND DYNAMIC ANALYSIS 

Table 16.2 Selective Results of Dam With Massless Foundation Analyses 

Dam 
Foundation 

Total Mass  
(lb-sec2/in) 

Periods   
(seconds) 

Max. 
Displacement  

(inches) 

Max. & Min. 
Stress   
(ksi) 

None 1,870 0.335   0.158 0.65   -37  to  +383 

Small  1,870 0.400   0.195 1.27 -480  to  +289  

Large  1,870 0.415   0.207 1.43 -550  to  +330 

16.7 APPROXIMATE RADIATION BOUNDARY CONDITIONS 

{ XE "Radiation Boundary Conditions" }If the foundation volume is large and 
the modal damping exists, it was demonstrated in the previous section that a 
finite foundation with fixed boundaries can produce converged results. However, 
the use of energy absorbing boundaries can further reduce the size of the 
foundation required to produce a converged solution. 

{ XE "Wave Propagation" }To calculate the properties of this boundary 
condition, consider a plane wave propagating in the x-direction. The forces that 
cause wave propagation are shown acting on a unit cube in Figure 16.4. 
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Figure 16.4 Forces Acting on Unit Cube 

From Figure 16.4 the one dimensional equilibrium equation in the x-direction is: 
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Because 
x
u

xx ∂
∂

λ=λε=σ  , the one-dimensional partial differential equation is 

written in the following classical wave propagation form: 
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where pV  is the wave propagation velocity of the material and is given by: 

ρ
λ

=pV  (16.20) 

in which ρ  is the mass density and λ is the bulk modulus given by: 
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The solution of Equation (16.13) for harmonic wave propagation in the positive 
x-direction is a displacement of the following form: 
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This equation can be easily verified by substitution into Equation (16.18). The 

arbitrary frequency of the harmonic motion is ω . The velocity, 
t
u
∂
∂ , of a particle 

at location x is: 
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The strain in the x-direction is: 
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The corresponding stress can now be expressed in the following simplified form: 
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),(),(),( txuVtxtx p &ρ−=ελ=σ  (16.25) 

The compression stress is identical to the force in a simple viscous damper with 
constant damping value equal to ρpV  per unit area of the boundary. Therefore, a 

boundary condition can be created, at a cut boundary, which will allow the wave 
to pass without reflection and allow the strain energy to “radiate” away from the 
foundation. 

Also, it can be easily shown that the shear wave “radiation” boundary condition, 
parallel to a free boundary, is satisfied if damping values are assigned to be ρsV  

per unit of boundary area. The shear wave propagation velocity is given by:  

ρ
=

GVs  (16.26) 

where G  is the shear modulus. 

The FNA method can be used to solve structures in the time domain with these 
types of boundary conditions. In later editions of this book, the accuracy of those 
boundary condition approximations will be illustrated using numerical examples. 
Also, it will be used with a fluid boundary where only compression waves exist. 

16.8 USE OF SPRINGS AT THE BASE OF A STRUCTURE 

{ XE "Half-Space Equations" }Another important structural modeling problem 
that must be solved is at the interface of the major structural elements within a 
structure and the foundation material. For example, the deformations at the base 
of a major shear wall in a building structure will significantly affect the 
displacement and force distribution in the upper stories of a building for both 
static and dynamic loads. Realistic spring stiffness can be selected from separate 
finite element studies or by using the classical half-space equations given in 
Table 16.3. 

It is the opinion of the author that the use of appropriate site-dependent free-field 
earthquake motions and selection of realistic massless springs at the base of the 
structure are the only modeling assumptions required to include site and 
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foundation properties in the earthquake analysis of most structural systems. 

Table 16.3 also contains effective mass and damping factors that include the 
approximate effects of radiation damping. Those values can be used directly in a 
computer model without any difficulty. However, considerable care should be 
taken in using those equations at the base of a complete structure. For example, 
the effective earthquake forces must not be applied to the foundation mass. 

Table 16.3 Properties of Rigid Circular Plate on Surface of Half-Space 

DIRECTION STIFFNESS DAMPING MASS 

Vertical 
ν-1

4Gr = K  rK1.79 3ρ  r1.50 3ρ  

Horizontal 
)-(2
)-(118.2Gr 2

2

ν
ν  rK1.08 3ρ  r0.28 3ρ  

Rotation r2.7G 3  rK0.47 3ρ  r0.49 5ρ  

Torsion r5.3G 3  rK1.11 5ρ  r0.70 5ρ  

=r plate radius; = G shear modulus; =ν Poisson's ratio; =ρ mass density 

Adapted from "Fundamentals of Earthquake Engineering, by Newmark and Rosenblueth, Prentice-Hall, 1971. 

16.9 SUMMARY 

A large number of research papers and several books have been written on 
structure-foundation-soil analysis and site response from earthquake loading. 
However, the majority of those publications have been restricted to the linear 
behavior of soil structure systems. It is possible to use the numerical methods 
presented in this book to conduct accurate earthquake analysis of real soil 
structure systems in the time domain, including many realistic nonlinear 
properties. Also, it can be demonstrated that the solution obtained is converged to 
the correct soil structure interactive solution. 

For major structures on soft soil, one-dimensional site response analyses should 
be conducted. Under major structural elements, such as the base of a shear wall, 
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massless elastic springs should be used to estimate the foundation stiffness. For 
massive structures, such as gravity dams, a part of the foundation should be 
modeled using three-dimensional SOLID elements in which SSI effects are 
included. 

16.10 SOIL-STRUCTION OPTION IN SAP2000 – Dec, 2012 

Dr Bob Morris, Development Engineer at CSI, recently wrote “Actually there 
is no explicit option for this. But you can do the following: 

- Define a load pattern, say "UXStructure" 

- Select all the elements in the structure and assign a gravity load to 
them in the UX direction using a scale factor 1/g, where g is the 
gravitational constant in the database length units. 

- Use load pattern "UXStructure" instead of acceleration UX in time-
history load cases. 

- Add additional load patterns for loading in the UY and UZ directions, 
if needed. 

This approach cannot be used for response-spectrum analyses, which 
always use acceleration loading on the whole model.  

This can be verified the user, by using a simple test where UXStructure 
is applied to the entire model and compare the results with acceleration 
UX to make sure this gives reasonable results.” 
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