
 

13. 

DYNAMIC ANALYSIS  
USING MODE SUPERPOSITION 

The Mode Shapes used to Uncouple the 
Dynamic Equilibrium Equations Need Not 
Be the Exact Free-Vibration Mode Shapes 

13.1 EQUATIONS TO BE SOLVED 

{ XE "Mode Shapes" }{ XE "Mode Superposition Analysis" }{ XE "Piece-Wise 
Linear Loading" }The dynamic force equilibrium Equation (12.4) can be 
rewritten in the following form as a set of Nd second order differential equations: 

jj
j

(t)(t)(t)(t)(t) gfFKuuCuM ∑
J

1=

 =  =  +  + &&&  (13.1) 

All possible types of time-dependent loading, including wind, wave and seismic, 
can be represented by a sum of “J” space vectors f j , which are not a function of 
time, and J time functions j(t)g . 

{ XE "Static Condensation" }The number of dynamic degrees of freedom is equal 
to the number of lumped masses in the system. Many publications advocate the 
elimination of all massless displacements by static condensation before solution 
of Equation (13.1). The static condensation method reduces the number of 
dynamic equilibrium equations to solve; however, it can significantly increase 
the density and the bandwidth of the condensed stiffness matrix. In building type 
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structures, in which each diaphragm has only three lumped masses, this approach 
is effective and is automatically used in building analysis programs. 

For the dynamic solution of arbitrary structural systems, however, the elimination 
of the massless displacement is, in general, not numerically efficient. Therefore, 
the modern versions of the SAP program do not use static condensation to retain 
the sparseness of the stiffness matrix. 

13.2 TRANSFORMATION TO MODAL EQUATIONS 

The fundamental mathematical method that is used to solve Equation (13.1) is the 
separation of variables. This approach assumes the solution can be expressed in 
the following form: 

(t)(t) Yu Φ =  (13.2a) 

Where Φ  is an “Nd by N” matrix containing N spatial vectors that are not a function 
of time, and (t)Y  is a vector containing N functions of time. 

From Equation (13.2a), it follows that: 

(t)(t)        (t)(t) YuYu &&&&&& ΦΦ  =  and =  (13.2b) and (13.2c) 

{ XE "Orthogonality Conditions" }Before solution, we require that the space 
functions satisfy the following mass and stiffness orthogonality conditions: 

ΩΦΦΦΦ 2TT  = andI = KM             (13.3) 

{ XE "Generalized Mass" }{ XE "Mass, Generalized" }where I  is a diagonal unit 
matrix and Ω2  is a diagonal matrix in which the diagonal terms are 2

nω . The term 
nω  has the units of radians per second and may or may not be a free vibration 

frequencies. It should be noted that the fundamentals of mathematics place no 
restrictions on those vectors, other than the orthogonality properties. In this book each 
space function vector, nφ , is always normalized so that the Generalized Mass is 
equal to one, or 0.1=n

T
n φφ M . 
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After substitution of Equations (13.2) into Equation (13.1) and the pre-multiplication 
by ΦT , the following matrix of N equations is produced: 

jj
j

(t)t(t)(t) gpYYdYI ∑Ω
J

1=

2  =  +  + )(&&&  (13.4) 

{ XE "Modal Participation Factors" }where fp jj
T = Φ  and are defined as the modal 

participation factors for load function j. The term pnj  is associated with the nth mode. 

Note that there is one set of “N” modal participation factors for each spatial load 
condition f j . 

{ XE "Damping Matrix" }{ XE "Damping:Classical Damping" }{ XE 
"Damping:Modal Damping" }{ XE "Modal Damping" }For all real structures, the “N 
by N” matrix d is not diagonal; however, to uncouple the modal equations, it is 
necessary to assume classical damping where there is no coupling between modes. 
Therefore, the diagonal terms of the modal damping are defined by: 

ωζ nnnn 2 = d  (13.5) 

where ζ n  is defined as the ratio of the damping in mode n  to the critical damping of 
the mode [1]. 

A typical uncoupled modal equation for linear structural systems is of the following 
form: 

jnj

J

1=j
n

2
nnnnn g(t)p = y(t) + (t)y2 + (t)y ∑ωωζ &&&  (13.6) 

For three-dimensional seismic motion, this equation can be written as: 

gznzgynygxnxn
2
nnnnn (t)up (t)up+(t)up = y(t) (t)y2 +(t)y &&&&&&&&& ++ωωζ  (13.7) 

{ XE "Earthquake Excitation Factors" }where the three-directional modal 
participation factors, or in this case earthquake excitation factors, are defined by 

M jn
T

nj - = p φ  in which j is equal to x, y or z and n is the mode number. Note that 
all mode shapes in this book are normalized so that 1=nn

T φφ M . 
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13.3 RESPONSE DUE TO INITIAL CONDITIONS ONLY 

{ XE "Initial Conditions" }Before presenting the solution of Equation (13.6) for 
various types of loading, it is convenient to define additional constants and 
functions that are summarized in Table 13.1. This will allow many of the 
equations presented in other parts of this book to be written in a compact form. 
Also, the notation reduces the tedium involved in the algebraic derivation and 
verification of various equations. In addition, it will allow the equations to be in a 
form that can be easily programmed and verified. 

If the “ n ” subscript is dropped, Equation (13.6) can be written for a typical 
mode as: 

&& &y(t) +  2 y(t) +  y(t) =  ξω ω 2 0  (13.8) 

in which the initial modal displacement 0y  and velocity 0y&  are specified as a 
result of previous loading acting on the structure. Note that the functions )(tS  
and )(tC  given in Table 13.1 are solutions to Equation (13.8). 

{ XE "Dynamic Response Equations" }Table 13.1 Summary of Notation used in Dynamic 
Response Equations 
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CONSTANTS 
21 ξωω −=D  ξωω =  

21 ξ

ξξ
−

=  

ωξ20 =a  22
1 ωω −= Da  Da ωω22 =  

FUNCTIONS 

)(sin)( tetS D
t ωξω−=  )(cos)( tetC D

t ωξω−=  

)()()( tCtStS Dωω +−=&  )()()( tStCtC Dωω −−=&  

)()()( 21 tCatSatS −−=&&  )()()( 21 tSatCatC +−=&&  

)()()(1 tStCtA ξ+=  )(1)(2 tStA
Dω

=  

 

The solution of Equation (13.8) can now be written in the following compact form: 

0201 )()()( ytAytAty &+=  (13.9) 

This solution can be easily verified because it satisfies Equation (13.8) and the 
initial conditions. 

13.4 GENERAL SOLUTION DUE TO ARBITRARY LOADING 

{ XE "Arbitrary Dynamic Loading" }{ XE "Dynamic Response Equations" }{ XE 
"Damping:Numerical Damping" }{ XE "Numerical Damping" }{ XE "Time 
Increment" }There are many different methods available to solve the typical 
modal equations. However, the use of the exact solution for a load, approximated 
by a polynomial within a small time increment, has been found to be the most 
economical and accurate method to numerically solve this equation within 
computer programs. It does not have problems with stability, and it does not 
introduce numerical damping. Because most seismic ground accelerations are 
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defined as linear within 0.005 second intervals, the method is exact for this type 
of loading for all frequencies. Also, if displacements are used as the basic input, 
the load function derived from linear accelerations are cubic functions within 
each time interval, as shown in Appendix J. 

To simplify the notation, all loads are added together to form a typical modal 
equation of the following form:  

R(t) = y(t) + (t)y2 + (t)y 2ωωζ &&&  (13.10) 

where the modal loading )(tR  is a piece-wise polynomial function as shown in 
Figure 13.1. Note that the higher derivatives required by the cubic load function 
can be calculated using the numerical method summarized in Appendix J. 
Therefore, the differential equation to be solved, within the interval 1−i  to i , is 
of the following form for both linear and cubic load functions: 

1

3

1

2

11 62 −−−− +++ iiii
2 RtRtRtR = y(t) + (t)y2 + (t)y &&&&&&&&& ωωζ  (13.11) 
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Figure 13.1 Modal Load Functions 

From the basic theory of linear differential equations, the general solution of 
Equation (13.11) is the sum of a homogeneous solution and a particular solution 
and is of the following form: 

3
6

2
54321 )()()( tbtbtbbtCbtSbty +++++=  (13.12a) 

The velocity and acceleration associated with this solution are: 

2
65421 32)()()( tbtbbtCbtSbty ++++= &&&  (13.12b) 

tbbtCbtSbty 6521 62)()()( +++= &&&&&&  (13.12c) 

i  to  1-i  interval  in   
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where Ri and Ri are specified

.

For linear loading within interval
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These equations are summarized in the following matrix equation: 

bBy )(
60.200)()(

320.10)()(
0.1)()(

6

5

4
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1

2

32

t

b
b
b
b
b
b
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y
y
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i
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
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
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
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
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


=

&&&&

&&

&&

&  (13.13) 

It is now possible to solve for the constants ib . The initial conditions at 
0=t are 11 )0()0( −− == ii yyyy  and && . Therefore, from Equations (13.12a and 

13.12b) 

321

4211

bby
bbby

i

Di

+=
+−=

−

− ϖω&
 (13.13a) 

The substitution of Equations (13.12a, 13.12b and 13.12c) into Equation (13.11) 
and setting the coefficients of each polynomial term to be equal produce the 
following four equations: 

6
2

1
3

605
2

1
2
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2

1
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2

1
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−

−

&&&

&&

&
 (13.13b) 

These six equations, given by Equations (13.13a and 13.13b), can be written as 
the following matrix equation: 



















































 −

=



























−

−

−

−

−

−

6

5

4

3

2

1

2
0

2
0

2
0

2

1

1

1

1

1

1

600000
620000

0.62000
00.200
0000.10.10
000.10

b
b
b
b
b
b

a
a

a

R
R
R
R
y
y D

i

i

i

i

i

i

ω
ω

ω
ω

ϖω

&&&

&&

&

&

  or, bCR 1
1

−
− =i  (13.14) 
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Therefore, 

1−= iRCb  (13.15) 

The inversion of the upper-triangular matrix C can be formed analytically; or it 
can easily be numerically inverted within the computer program. Hence, the 
exact solution at time point i of a modal equation because of a cubic load within 
the time step is the following: 

11)( −− =∆= iii t RARCBy  (13.16) 

{ XE "Response Spectrum Analyses:Numerical Evaluation" }{ XE "Duhamel 
Integral" }{ XE "Time Increment" }Equation (13.16) is a very simple and 
powerful recursive relationship. The complete algorithm for linear or cubic 
loading is summarized in Table 13.2. Note that the 3 by 6 A matrix is computed 
only once for each mode. Therefore, for each time increment, approximately 20 
multiplications and 16 additions are required. Modern, inexpensive personal 
computers can complete one multiplication and one addition in approximately 10-

6 seconds. Hence, the computer time required to solve 200 steps per second for a 
50 second duration earthquake is approximately 0.01 seconds. Or 100 modal 
equations can be solved in one second of computer time. Therefore, there is no 
need to consider other numerical methods, such as the approximate Fast Fourier 
Transformation Method or the numerical evaluation of the Duhamel integral, to 
solve these equations. Because of the speed of this exact piece-wise polynomial 
technique, it can also be used to develop accurate earthquake response spectra 
using a very small amount of computer time. 
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{ XE "Algorithms for:Solution of Modal Equations" }Table  13.2 Higher-Order 
Recursive Algorithm for Solution of Modal Equation 

I. EQUATION TO BE SOLVED: 

1

3

1

2

11
2

62
)()(2)( −−−− +++=++ iiii RtRtRtRtytyty &&&&&&&&& ωξω  

II. INITIAL CALCULATIONS 
21 ξωω −=D  ξωω =  
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ξξ
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=  

ωξ20 =a  22
1 ωω −= Da  Da ωω22 =  

)(sin)( tetS D
t ∆=∆ ∆− ωξω  )(cos)( tetC D

t ∆=∆ ∆− ωξω  

)()()( tCtStS D ∆+∆−=∆ ωω&  )()()( tStCtC D ∆−∆−=∆ ωω&  
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∆
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∆
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b. 
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i ∆
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1
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c. 1−= ii RAy   

d. i=i+1  and return to III.a 
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13.5  SOLUTION FOR PERIODIC LOADING 

{ XE "Recurrence Solution for Arbitrary Dynamic Loading" }{ XE "Periodic 
Dynamic Loading" }{ XE "Wave Loading" }{ XE "Wind Loading" }The 
recurrence solution algorithm summarized by Equation 13.16 is a very efficient 
computational method for arbitrary, transient, dynamic loads with initial 
conditions. It is possible to use this same simple solution method for arbitrary 
periodic loading as shown in Figure 13.2. Note that the total duration of the 
loading is from ∞−  to ∞+ and the loading function has the same amplitude and 
shape for each typical period pT . Wind, sea wave and acoustic forces can 
produce this type of periodic loading. Also, dynamic live loads on bridges may 
be of periodic form. 

T

pT pT pT pT Time

F(t)

Mean
Wind
Pressure

 

Figure 13.2 Example of Periodic Loading 

For a typical duration pT  of loading, a numerical solution for each mode can be 
evaluated by applying Equation (13.11) without initial conditions. This solution is 
incorrect because it does not have the correct initial conditions. Therefore, it is 
necessary for this solution )(ty  to be corrected so that the exact solution )(tz  has the 
same displacement and velocity at the beginning and end of each loading period. To 
satisfy the basic dynamic equilibrium equation, the corrective solution )(tx  must 
have the following form: 

)()()( 2010 tAxtAxtx &+=  (13.17) 

where the functions are defined in Table 13.1. 
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The total exact solution for displacement and velocity for each mode can now be 
written as: 

)()()( txtytz +=  (13.18a) 

)()()( txtytz &&& +=  (13.18b) 

So that the exact solution is periodic, the following conditions must be satisfied: 

)0()( zTz p =  (13.19a) 

)0()( zTz p && =  (13.19b) 

The numerical evaluation of Equation (13.14) produces the following matrix 
equation, which must be solved for the unknown initial conditions: 









−
−

=









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



−−
−−
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)(1)(
)()(1

0

0

21

21

p

p

pp

pp

Ty
Ty

x
x

TATA
TATA

&&&&  (13.20) 

The exact periodic solution for modal displacements and velocities can now be 
calculated from Equations (13.18a and 13.18b). Hence, it in not necessary to use a 
frequency domain solution approach for periodic loading as suggested in most text 
books on structural dynamics. 

13.6 PARTICIPATING MASS RATIOS 

{ XE "Mass Participation Ratios" }{ XE "Participating Mass Ratios" }Several 
Building Codes require that at least 90 percent of the participating mass is included in 
the calculation of response for each principal direction. This requirement is based on a 
unit base acceleration in a particular direction and calculating the base shear due to 
that load. The steady state solution for this case involves no damping or elastic forces; 
therefore, the modal response equations for a unit base acceleration in the x-direction 
can be written as: 

p = y nxn&&  (13.21) 
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The node point inertia forces in the x-direction for that mode are by definition: 

φφ nnxnn p(t) M =yM = uM = fxn &&&&  (13.22) 

The resisting base shear in the x-direction for mode n is the sum of all node point x 
forces. Or: 

p =  p- = V 2
nxnxnxnx φMIT  (13.23) 

The total base shear in the x-direction, including N modes, will be: 

p = V 2
nx

N

1=n
x ∑  (13.24) 

For a unit base acceleration in any direction, the exact base shear must be equal to the 
sum of all mass components in that direction. Therefore, the participating mass ratio 
is defined as the participating mass divided by the total mass in that direction. Or:  

 
m

p
 = X

x

2
nx

N

1=n
mass

∑

∑
 (13.25a) 

 
m

p
 = Y

y

2
ny

N

1=n
mass

∑

∑
 (13.25b) 

 
m

p
 = Z

z

2
nz

N

1=n
mass

∑

∑
 (13.25c) 

{ XE "Mass Participation Rule" }If all modes are used, these ratios will all be equal to 
1.0. It is clear that the 90 percent participation rule is intended to estimate the 
accuracy of a solution for base motion only. It cannot be used as an error estimator 
for other types of loading, such as point loads or base displacements acting on the 
structure.  



13-14 STATIC AND DYNAMIC ANALYSIS 

Most computer programs produce the contribution of each mode to those ratios. In 
addition, an examination of those factors gives the engineer an indication of the 
direction of the base shear associated with each mode. For example, the angle with 
respect to the x-axis of the base shear associated with the first mode is given by: 











= −

y

x

p
p

1

11
1 tanθ  (13.26) 

13.7 STATIC LOAD PARTICIPATION RATIOS 

{ XE "Static Load Participation Ratios" }For arbitrary loading, it is useful to 
determine if the number of vectors used is adequate to approximate the true response 
of the structural system. One method, which the author has proposed, is to evaluate 
the static displacements using a truncated set of vectors to solve for the response 
resulting from static load patterns. As indicated by Equation (13.1), the loads can be 
written as: 

jj

J

1=

(t) =  gfF ∑
j

(t)  (13.27) 

First, one solves the statics problem for the exact displacement ju  associated with the 
load pattern jf . Then, the total external work associated with load condition j is: 

j
T
jjE uf

2
1

=  (13.28) 

From Equation (13.6), the modal response, neglecting inertia and damping forces, is 
given by: 

j
T
n

n
ny fφ

ω 2

1
=  (13.29) 

From the fundamental definition of the mode superposition method, a truncated set of 
vectors defines the approximate displacement jv  as: 
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∑ ∑
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φ f  (13.30) 

The total external work associated with the truncated mode shape solution is: 
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A static load participation ratio jr  can now be defined for load condition j as the 
ratio of the sum of the work done by the truncated set of modes to the external total 
work done by the load pattern. Or: 

j
T
j

L

n n

nj

j

j
j

p

E
E

r
uf

∑
=





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



== 1

2

ω
 (13.32) 

If this ratio is close to 1.0, the errors introduced by vector truncation will be very 
small. However, if this ratio is less than 90 percent, additional vectors should be used 
in the analysis to capture the static load response. 

It has been the experience of the author that the use of exact eigenvectors is not 
an accurate vector basis for the dynamic analysis of structures subjected to point 
loads. Whereas, load-dependent vectors, which are defined in the following 
chapter, always produce a static load participation ratio of 1.0. 

13.8 DYNAMIC LOAD PARTICIPATION RATIOS 

{ XE "Dynamic Participation Ratios" }In addition to participating mass ratios and 
static load participation ratios, it is possible to calculate a dynamic load 
participation ratio for each load pattern. All three of these ratios are 
automatically produced by the SAP2000 program. 

The dynamic load participation ratio is based on the physical assumption that only 
inertia forces resist the load pattern. Considering only mass degrees of freedom, the 
exact acceleration ju&&  because of the load pattern jf  is: 
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jj fMu 1−=&&  (13.33) 

The velocity of the mass points at time 1=t  is:  

jjj t fMfMu 11 −− ==&  (13.34) 

Hence, the total kinetic energy associated with load pattern j is: 

j
T
j

T
jE fMfuMu 1

2
1

2
1 −== &&  (13.35) 

From Equation 13.6, the modal acceleration and velocity, neglecting the massless 
degrees of freedom, is given by: 

      at     and   1==== ttyy j
T
nj

T
nnj

T
nn fff φφφ &&&  (13.36) 

From the fundamental definition of the mode superposition method, a truncated set of 
vectors defines the approximate velocity jv&  as: 

∑∑∑ ∑
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The total kinetic energy associated with the truncated mode shape solution is: 

∑∑∑
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1 φφ MvMv &&  (13.38) 

A dynamic load participation ratio rj  can now be defined for load condition j as the 
ratio of the sum of the kinetic energy associated with the truncated set of modes to the 
total kinetic energy associated with the load pattern. Or: 
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N
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j
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The dynamic load participation ratio includes only loads that are associated with 
mass degrees of freedom. However, the static load participation factor includes 
the effects of the loads acting at the massless degrees of freedom. 

A 100 percent dynamic load participation indicates that the high frequency 
response of the structure is captured. In addition, for the cases of mass 
proportional loading in the three global directions, the dynamic load participation 
ratios are identical to the mass participation factors. 

13.9 SUMMARY 

The mode superposition method is a very powerful method used to reduce the 
number of unknowns in a dynamic response analysis. All types of loading can be 
accurately approximated by piece-wise linear or cubic functions within a small 
time increment. Exact solutions exist for these types of loading and can be 
computed with a trivial amount of computer time for equal time increments. 
Therefore, there is no need to present other methods for the numerical evaluation 
of modal equations. 

To solve for the linear dynamic response of structures subjected to periodic 
loading, it is only necessary to add a corrective solution to the transient solution 
for a typical time period of loading. The corrective solution forces the initial 
conditions of a typical time period to be equal to the final conditions at the end of 
the time period. Hence, the same time-domain solution method can be used to 
solve wind or wave dynamic response problems in structural engineering. 

Participating mass factors can be used to estimate the number of vectors required 
in an elastic seismic analysis where base accelerations are used as the 
fundamental loading. The use of mass participation factors to estimate the 
accuracy of a nonlinear seismic analysis can introduce significant errors. Internal 
nonlinear concentrated forces that are in equal and opposite directions do not 
produce a base shear. In addition, for the case of specified base displacements, 
the participating mass ratios do not have a physical meaning.  

Static and dynamic participation ratios are defined and can be used to estimate 
the number of vectors required. It will later be shown that the use of Ritz vectors, 
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rather than the exact eigenvectors, will produce vectors that have static and 
dynamic participation ratios at or near 100 percent.  

 


