
 

 

12. 

DYNAMIC ANALYSIS  
                                                         Force Equilibrium is Fundamental in 

the Dynamic Analysis of Structures 

12.1 INTRODUCTION  

{ XE "Newton's Second Law" }All real physical structures behave dynamically 
when subjected to loads or displacements. The additional inertia forces, from 
Newton’s second law, are equal to the mass times the acceleration. If the loads or 
displacements are applied very slowly, the inertia forces can be neglected and a 
static load analysis can be justified. Hence, dynamic analysis is a simple 
extension of static analysis. 

In addition, all real structures potentially have an infinite number of 
displacements. Therefore, the most critical phase of a structural analysis is to 
create a computer model with a finite number of massless members and a finite 
number of node (joint) displacements that will simulate the behavior of the real 
structure. The mass of a structural system, which can be accurately estimated, is 
lumped at the nodes. Also, for linear elastic structures, the stiffness properties of 
the members can be approximated with a high degree of confidence with the aid 
of experimental data. However, the dynamic loading, energy dissipation 
properties and boundary (foundation) conditions for many structures are difficult 
to estimate. This is always true for the cases of seismic input or wind loads. 

To reduce the errors that may be caused by the approximations summarized in 
the previous paragraph, it is necessary to conduct many different dynamic 
analyses using different computer models, loading and boundary conditions. It is 
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not unrealistic to conduct 20 or more computer runs to design a new structure or 
to investigate retrofit options for an existing structure. 

Because of the large number of computer runs required for a typical dynamic 
analysis, it is very important that accurate and numerically efficient methods be 
used within computer programs. Some of those methods have been developed by 
the author and are relatively new. Therefore, one of the purposes of this book is 
to summarize those numerical algorithms, their advantages and limitations. 

12.2 DYNAMIC EQUILIBRIUM 

The force equilibrium of a multi-degree-of-freedom lumped mass system as a 
function of time can be expressed by the following relationship: 

(t)(t)(t)(t) SDI FFFF  =  +  +  (12.1) 

in which the force vectors at time t  are: 

I(t)F  is a vector of inertia forces acting on the node masses 

D(t)F  is a vector of viscous damping, or energy dissipation, forces 

S(t)F  is a vector of internal forces carried by the structure 

(t)F  is a vector of externally applied loads 

Equation (12.1) is based on physical laws and is valid for both linear and 
nonlinear systems if equilibrium is formulated with respect to the deformed 
geometry of the structure. 

For many structural systems, the approximation of linear structural behavior is 
made to convert the physical equilibrium statement, Equation (12.1), to the 
following set of second-order, linear, differential equations: 

(t)(t)(t)(t) aaa FuKuCuM  =  +  + &&&  (12.2) 

in which M  is the mass matrix (lumped or consistent), C  is a viscous damping 
matrix (which is normally selected to approximate energy dissipation in the real 
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structure) and K  is the static stiffness matrix for the system of structural 
elements. The time-dependent vectors a(t)u , a(t)u&  and a(t)u&&  are the absolute 
node displacements, velocities and accelerations, respectively. 

Many books on structural dynamics present several different methods of applied 
mathematics to obtain the exact solution of Equation (12.2). Within the past 
several years, however, with the general availability of inexpensive, high-speed 
personal computers (see Appendix H), the exact solution of Equation (12.2) can 
be obtained without the use of complex mathematical techniques. Therefore, the 
modern structural engineer who has a physical understanding of dynamic 
equilibrium and energy dissipation can perform dynamic analysis of complex 
structural systems. A strong engineering mathematical background is desirable; 
however, in my opinion, it is no longer mandatory. 

{ XE "Earthquake Loading" }For seismic loading, the external loading (t)F  is 
equal to zero. The basic seismic motions are the three components of free-field 
ground displacements igu(t)  that are known at some point below the foundation 
level of the structure. Therefore, we can write Equation (12.2) in terms of the 
displacements (t)u , velocities (t)u&  and accelerations (t)u&&  that are relative to the 
three components of free-field ground displacements. 

Therefore, the absolute displacements, velocities and accelerations can be 
eliminated from Equation (12.2) by writing the following simple equations:  

zgzygyxgxa u(t) + u(t) + u(t)(t)(t) IIIuu  +  =  

zgzygyxgxa (t)u + (t)u + (t)u(t)(t) &&&&& IIIuu  +  =  (12.3) 

zgzygyxgxa (t)u + (t)u + (t)u(t)(t) &&&&&&&&&& IIIuu  +  =  

where Ii  is a vector with ones in the “i” directional degrees-of-freedom and zero 
in all other positions. The substitution of Equation (12.3) into Equation (12.2) 
allows the node point equilibrium equations to be rewritten as: 

zgzygyxgx (t)u - (t)u - (t)u-(t)(t)(t) &&&&&&&&& MMMKuuCuM  =  +  +  (12.4) 

where ii MIM = . 
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The simplified form of Equation (12.4) is possible since the rigid body velocities 
and displacements associated with the base motions cause no additional damping 
or structural forces to be developed. 

It is important for engineers to realize that the displacements, which are normally 
printed by a computer program, are relative displacements and that the 
fundamental loading on the structure is foundation displacements and not 
externally applied loads at the joints of the structure. For example, the static 
pushover analysis of a structure is a poor approximation of the dynamic behavior 
of a three-dimensional structure subjected to complex time-dependent base 
motions. Also, one must calculate absolute displacements to properly evaluate 
base isolation systems. 

There are several different classical methods that can be used for the solution of 
Equation (12.4). Each method has advantages and disadvantages that depend on 
the type of structure and loading. To provide a general background for the 
various topics presented in this book, the different numerical solution methods 
are summarized below. 

12.3 STEP-BY-STEP SOLUTION METHOD 

{ XE "Dynamic Analysis by:Direct Integration" }The most general solution 
method for dynamic analysis is an incremental method in which the equilibrium 
equations are solved at times  ,3,2, t t t ∆∆∆ etc. There are a large number of 
different incremental solution methods. In general, they involve a solution of the 
complete set of equilibrium equations at each time increment. In the case of 
nonlinear analysis, it may be necessary to reform the stiffness matrix for the 
complete structural system for each time step. Also, iteration may be required 
within each time increment to satisfy equilibrium. As a result of the large 
computational requirements, it can take a significant amount of time to solve 
structural systems with just a few hundred degrees-of-freedom. 

In addition, artificial or numerical damping must be added to most incremental 
solution methods to obtain stable solutions. For this reason, engineers must be 
very careful in the interpretation of the results. For some nonlinear structures 
subjected to seismic motions, incremental solution methods are necessary. 
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For very large structural systems, a combination of mode superposition and 
incremental methods has been found to be efficient for systems with a small 
number of nonlinear members. This method has been incorporated into the new 
versions of SAP and ETABS and will be presented in detail later in this book. 

12.4 MODE SUPERPOSITION METHOD 

{ XE "Dynamic Analysis by:Mode Superposition" }The most common and 
effective approach for seismic analysis of linear structural systems is the mode 
superposition method. After a set of orthogonal vectors have been evaluated, this 
method reduces the large set of global equilibrium equations to a relatively small 
number of uncoupled second order differential equations. The numerical solution 
of those equations involves greatly reduced computational time. 

It has been shown that seismic motions excite only the lower frequencies of the 
structure. Typically, earthquake ground accelerations are recorded at increments 
of 200 points per second. Therefore, the basic loading data does not contain 
information over 50 cycles per second. Hence, neglecting the higher frequencies 
and mode shapes of the system normally does not introduce errors. 

12.5 RESPONSE SPECTRA ANALYSIS  

{ XE "Dynamic Analysis by:Response Spectrum" }The basic mode superposition 
method, which is restricted to linearly elastic analysis, produces the complete 
time history response of joint displacements and member forces because of a 
specific ground motion loading [1, 2]. There are two major disadvantages of 
using this approach. First, the method produces a large amount of output 
information that can require an enormous amount of computational effort to 
conduct all possible design checks as a function of time. Second, the analysis 
must be repeated for several different earthquake motions to ensure that all the 
significant modes are excited, because a response spectrum for one earthquake, in 
a specified direction, is not a smooth function. 

There are significant computational advantages in using the response spectra 
method of seismic analysis for prediction of displacements and member forces in 
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structural systems. The method involves the calculation of only the maximum 
values of the displacements and member forces in each mode using smooth 
design spectra that are the average of several earthquake motions. In this book, 
we will recommend the CQC method to combine these maximum modal 
response values to obtain the most probable peak value of displacement or force. 
In addition, it will be shown that the SRSS and CQC3 methods of combining 
results from orthogonal earthquake motions will allow one dynamic analysis to 
produce design forces for all members in the structure.  

12.6 SOLUTION IN THE FREQUENCY DOMAIN 

{ XE "Dynamic Analysis by:Frequency Domain" }The basic approach used to 
solve the dynamic equilibrium equations in the frequency domain is to expand 
the external loads (t)F  in terms of Fourier series or Fourier integrals. The 
solution is in terms of complex numbers that cover the time span from ∞-  to ∞ . 
Therefore, it is very effective for periodic types of loads such as mechanical 
vibrations, acoustics, sea-waves and wind [1]. However, the use of the frequency 
domain solution method for solving structures subjected to earthquake motions 
has the following disadvantages: 

1. The mathematics for most structural engineers, including myself, is difficult to 
understand. Also, the solutions are difficult to verify.  

2. Earthquake loading is not periodic; therefore, it is necessary to select a long 
time period so that the solution from a finite length earthquake is completely 
damped out before application of the same earthquake at the start of the next 
period of loading. 

3. For seismic type loading, the method is not numerically efficient. The 
transformation of the result from the frequency domain to the time domain, 
even with the use of Fast Fourier Transformation methods, requires a 
significant amount of computational effort. 

4. The method is restricted to the solution of linear structural systems. 

5. The method has been used, without sufficient theoretical justification, for the 
approximate nonlinear solution of site response problems and soil/structure 
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interaction problems. Typically, it is used in an iterative manner to create 
linear equations. The linear damping terms are changed after each iteration to 
approximate the energy dissipation in the soil. Hence, dynamic equilibrium 
within the soil is not satisfied. 

12.7 SOLUTION OF LINEAR EQUATIONS 

{ XE "Solution of Equations" }The step-by-step solution of the dynamic 
equilibrium equations, the solution in the frequency domain, and the evaluation 
of eigenvectors and Ritz vectors all require the solution of linear equations of the 
following form: 

BAX  =  (12.5) 

Where A is an 'N by N' symmetric matrix that contains a large number of zero 
terms. The 'N by M' X displacement and B load matrices indicate that more than 
one load condition can be solved at the same time. 

The method used in many computer programs, including SAP2000 [5] and 
ETABS [6], is based on the profile or active column method of compact storage. 
Because the matrix is symmetric, it is only necessary to form and store the first 
non-zero term in each column down to the diagonal term in that column. 
Therefore, the sparse square matrix can be stored as a one-dimensional array 
along with a N by 1 integer array that indicates the location of each diagonal 
term. If the stiffness matrix exceeds the high-speed memory capacity of the 
computer, a block storage form of the algorithm exists. Therefore, the capacity of 
the solution method is governed by the low speed disk capacity of the computer. 
This solution method is presented in detail in Appendix C of this book. 

12.8 UNDAMPED HARMONIC RESPONSE  

{ XE "Harmonic Loading" }The most common and very simple type of dynamic 
loading is the application of steady-state harmonic loads of the following form: 

t)((t) ωsinf = F  (12.6) 
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The node point distribution of all static load patterns, f , which are not a function 
of time, and the frequency of the applied loading, ω , are user specified. 
Therefore, for the case of zero damping, the exact node point equilibrium 
equations for the structural system are:  

t)( (t)(t) ωsinfKuuM  =  + &&  (12.7) 

The exact steady-state solution of this equation requires that the node point 
displacements and accelerations are given by: 

t)(       , t)( ωωω sinsin 2vuvu - = (t) = (t) &&  (12.8) 

Therefore, the harmonic node point response amplitude is given by the solution 
of the following set of linear equations: 

  = or            = ] - [ fvKfvMK 2ω  (12.9) 

It is of interest to note that the normal solution for static loads is nothing more 
than a solution of this equation for zero frequency for all loads. It is apparent that 
the computational effort required for the calculation of undamped steady-state 
response is almost identical to that required by a static load analysis. Note that it 
is not necessary to evaluate mode shapes or frequencies to solve for this very 
common type of loading. The resulting node point displacements and member 
forces vary as t)(ωsin . However, other types of loads that do not vary with time, 
such as dead loads, must be evaluated in a separate computer run. 

12.9 UNDAMPED FREE VIBRATIONS 

{ XE "Undamped Free Vibration" }Most structures are in a continuous state of 
dynamic motion because of random loading such as wind, vibrating equipment, 
or human loads. These small ambient vibrations are normally near the natural 
frequencies of the structure and are terminated by energy dissipation in the real 
structure. However, special instruments attached to the structure can easily 
measure the motion. Ambient vibration field tests are often used to calibrate 
computer models of structures and their foundations. 
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After all external loads have been removed from the structure, the equilibrium 
equation, which governs the undamped free vibration of a typical displaced shape 
v, is: 

   0KvvM =+&&  (12.10) 

{ XE "Energy:Mechanical Energy" }{ XE "Mechanical Energy" }At any time, the 
displaced shape v may be a natural mode shape of the system, or any 
combination of the natural mode shapes. However, it is apparent the total energy 
within an undamped free vibrating system is a constant with respect to time. The 
sum of the kinetic energy and strain energy at all points in time is a constant that 
is defined as the mechanical energy of the dynamic system and calculated from: 

  EM Kv vvMv TT

2
1

2
1

+= &&  (12.11) 

12.10 SUMMARY 

Dynamic analysis of three-dimensional structural systems is a direct extension of 
static analysis. The elastic stiffness matrices are the same for both dynamic and 
static analysis. It is only necessary to lump the mass of the structure at the joints. 
The addition of inertia forces and energy dissipation forces will satisfy dynamic 
equilibrium. The dynamic solution for steady state harmonic loading, without 
damping, involves the same numerical effort as a static solution. Classically, 
there are many different mathematical methods to solve the dynamic equilibrium 
equations. However, it will later be shown in this book that the majority of both 
linear and nonlinear systems can be solved with one numerical method. 

Energy is fundamental in dynamic analysis. At any point in time, the external 
work supplied to the system must be equal to the sum of the kinetic and strain 
energy plus the energy dissipated in the system. 

{ XE "Energy:Zero Strain Energy" }It is my opinion, with respect to earthquake 
resistant design, that we should try to minimize the mechanical energy in the 
structure. It is apparent that a rigid structure will have only kinetic energy and 
zero strain energy. On the other hand, a completely base isolated structure will 
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have zero kinetic energy and zero strain energy. A structure cannot fail if it has 
zero strain energy. 
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