
 

APPENDIX J 

CONSISTENT EARTHQUAKE 
ACCELERATION AND DISPLACEMENT 

RECORDS 
Earthquake Accelerat ions can be Measured.  However,  
Structures  are Subjected to  Earthquake Displacements   

J.1 INTRODUCTION  

{ XE "Acceleration Records" }At the present time most earthquake motions are 
approximately recorded by accelerometers at equal time intervals. After 
correcting the acceleration record, as a result of the dynamic properties of the 
instrument, the record may still contain recording errors. Assuming a linear 
acceleration within each time interval, a direct integration of the accelerations 
generally produces a velocity record with a non-zero velocity at the end of the 
record that should be zero. And an exact integration of the velocity record does 
not produce a zero displacement at the end of the record. One method currently 
used to mathematically produce a zero displacement at the end of the record is to 
introduce a small initial velocity so that the displacement at the end of the record 
is zero. However, this initial condition is not taken into account in the dynamic 
analysis of the computer model of the structure. In addition, those displacement 
records cannot be used directly in multi-support earthquake response analysis. 

The purpose of this appendix is to summarize the fundamental equations 
associated with time history records. It will be demonstrated that the recovery of 
accelerations from displacements is an unstable numerical operation. A new 
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numerical method is presented for the modification of an acceleration record, or 
part of an acceleration record, so that it satisfies the fundamental laws of physics 
in which the displacement, velocity and acceleration records are consistent. 

J.2 GROUND ACCELERATION RECORDS 

Normally, 200 points per second are used to define an acceleration record, and it 
is assumed that the acceleration function is linear within each time increment, as 
shown in Figure J.1. 
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Figure J.1 Typical Earthquake Acceleration Record 

Ground velocities and displacements can then be calculated from the integration 
of the accelerations and velocities within each time step. Or: 
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The evaluation of those equations at tt ∆= produces the following set of 
recursive equations: 
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The integration of ground acceleration records should produce zero velocity at 
the end of the record. In addition, except for near fault earthquake records, zero 
displacements should be obtained at the end of the record. Real earthquake 
accelerations are normally corrected to satisfy those requirements. 

{ XE "Cubic Displacement Functions" }Note that the displacements are cubic 
functions within each time increment. Therefore, if displacements are used as the 
specified seismic loading, smaller time steps or a higher order solution method, 
based on cubic displacements, must be used for the dynamic structural analysis. 
On the other hand, if accelerations are used as the basic loading, a lower order 
solution method, based on linear functions, may be used to solve the dynamic 
response problem. 

J.3 CALCULATION OF ACCELERATION RECORD FROM 
DISPLACEMENT RECORD 

Rewriting Equation (J.2), it should be possible, given the displacement record, to 
calculate the velocity and acceleration records from the following equations: 
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On the basis of linear acceleration within each time step, Equations (J.2) and (J.3) 
are theoretically exact, given the same initial conditions. However, computer 
round off introduces errors in the velocities and accelerations and the recurrence 
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Equation (J.3) is unstable and cannot be used to recover the input acceleration 
record. This instability can be illustrated by rewriting the equations in the 
following form: 
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If the displacements are constant, the recurrence equation written in matrix form 
is: 
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Or, if a small round-off error, ε , is introduced as an initial condition, the 
following results are produced: 
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It is apparent from Equation (J.6) that the introduction of a small round-off error 
in the velocity or acceleration at any step will have an opposite sign and be 
amplified in subsequent time steps. Therefore, it is necessary to use an alternate 
approach to calculate the velocities and accelerations directly from the 
displacement record. 

{ XE "Spline Functions" }It is possible to use cubic spline functions to fit the 
displacement data and to recover the velocity and acceleration data. The 
application of Taylor’s series at point i produces the following equations for the 
displacement and velocity: 
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Elimination of u&&& from these equations produces an equation for the acceleration 
at time it . Or: 
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Evaluation of Equation (22.10) at ) and (at   11 i-itt +∆±= produces the following 
equations: 
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Requiring that u&& be continuous, the following equation must be satisfied at each 
point: 
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Therefore, there is one unknown velocity per point. This well-conditioned 
tridiagonal set of equations can be solved directly or by iteration. Those 
equations are identical to the moment equilibrium equations for a continuous 
beam that is subjected to normal displacements. After velocities (slopes) are 
calculated, accelerations (curvatures) and derivatives (shears) are calculated 
from:  
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This “spline function” approach eliminates the numerical instability problems 
associated with the direct application of Equations (J.4). However, it is difficult 
to physically justify how the displacements at a future time point 1+i  can affect 
the velocities and accelerations at time point i . 

J.4 CREATING CONSISTENT ACCELERATION RECORD 

{ XE "Algorithms for:Correction of Acceleration Records" }Earthquake 
compression, shear and surface waves propagate from a fault rupture at different 
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speeds with the small amplitude compression waves arriving first. For example, 
acceleration records recorded near the San Francisco-Oakland Bay Bridge from 
the 1989 Loma Prieta earthquake indicate high frequency, small acceleration 
motions for the first ten seconds. The large acceleration phase of the record is 
between 10 and 15 seconds only. However, the official record released covers 
approximately a 40-second time span. Such a long record is not suitable for a 
nonlinear, time-history response analysis of a structural model because of the 
large computer storage and execution time required. 

It is possible to select the “large acceleration part of the record” and use it as the 
basic input for the computer model. To satisfy the fundamental laws of physics, 
the truncated acceleration record must produce zero velocity and displacement at 
the beginning and end of the earthquake. This can be accomplished by applying a 
correction to the truncated acceleration record that is based on the fact that any 
earthquake acceleration record is a sum of acceleration pluses, as shown in 
Figure J.2. 
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Figure J.2 Typical Earthquake Acceleration Pulse  

From spline theory, the exact displacement at the end of the record is given by 
the following equation: 
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A correction to the acceleration record may now be calculated so that the 
displacement at the end of the record, Equation (J.12), is identically equal to 
zero. Rather then apply an initial velocity, the first second or two of the 
acceleration record can be modified to obtain zero displacement at the end of the 
record. Let us assume that all of the correction is to be applied to the first “L” 
values of the acceleration record. To avoid a discontinuity in the acceleration 
record, the correction will be weighted by a linear function, from α  at time zero 
to zero at time Lt . Therefore, the displacement resulting from the correction 
function at the end of the record is of the following form: 
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For Equation (J.13) the positive and negative terms are calculated separately. If it 
is assumed that the correction is equal for the positive and negative terms, the 
amplitudes of the correction constants are given by: 
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Therefore, the correction function can be added to the first “L” values of the 
acceleration record to obtain zero displacement at the end of the record. This 
simple correction algorithm is summarized in Table J.1. 

If the correction period is less that one second, this very simple algorithm, 
presented in Table J.1, produces almost identical maximum and minimum 
displacements and velocities as the mathematical method of selecting an initial 
velocity. However, this simple one-step method produces physically consistent 
displacement, velocity and acceleration records. This method does not filter 
important frequencies from the record and the maximum peak acceleration is 
maintained. 

The velocity at the end of the record can be set to zero if a similar correction is 
applied to the final few seconds of the acceleration record. Iteration would be 
required to satisfy both the zero displacement and velocity at the end of the 
record.  
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Table J.1 Algorithm to Set Displacement at End of Records to Zero 

1. GIVEN UNCORRECTED ACCELERATION RECORD 
  L and  0,..........................,.........,,,,0 14321 −Iuuuuu &&&&&&&&&&  

2. COMPUTE CORRECTION FUNCTION 
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3. CORRECT ACCELERATION RECORD  
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J.5 SUMMARY 

Acceleration records can be accurately defined by 200 points per second and with 
the assumption that the acceleration is a linear function within each time step. 
However, the resulting displacements are cubic functions within each time step 
and smaller time steps must be user-define displacement records. The direct 
calculation of an acceleration record from a displacement record is a numerically 
unstable problem, and special numerical procedures must be used to solve this 
problem. 

The mathematical method of using an initial velocity to force the displacement at 
the end of the record to zero produces an inconsistent displacement record that 
should not be directly used in a dynamic analysis. A simple algorithm for the 
correction of the acceleration record has been proposed that produces physically 
acceptable displacement, velocity and acceleration records. 


