
 

APPENDIX I 

METHOD OF LEAST SQUARE 
       The Method of Least Square can be used to  

Approximately Solve a Set of N Equations with M Unknowns  

I.1 SIMPLE EXAMPLE 
In experimental mechanics, it is very common to obtain a large amount of data 
that cannot be exactly defined by a simple analytical function. For example, 
consider the following four (N) data points: 

Table I.1  Four Data Points 
x y 

0.00 1.0 
0.75 0.6 
1.50 0.3 
2.00 0.0 

Now let us approximate the data with the following linear function with 
two (M) unknown constants: 

)(21 xyxcc =+  (I.1) 

If this equation is evaluated at the four data points, the following observational 
equations are obtained: 
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These four equations can be written as the following matrix equation: 
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     Or, symbolically as   bAc =  (I.3) 

Equation I.3 cannot be solved exactly because the four equations have two 
unknowns. However, both sides of the equation can be multiplied by TA and the 
following two equations in terms of two unknowns are produced: 









=
















=

9.0
9.1

81.625.4
25.400.4

2

1

c
c

    Or,        bAAcA TT  (I.4) 

The solution of this symmetric set of equations is: 
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It is apparent that the error, which is the difference between the values at the data 
points and the values produced by the approximate equation, can be calculated 
from: 
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I.2 GENERAL FORMULATION 
It will be shown in this section that the ad hoc approach, presented in the previous 
section, produces results in which the sum of the square of the errors at the data 
points is a minimum.  The error vector can be written as: 

TTTT bAcebAce -     or,   =−=  (I.7) 

It is now possible to calculate the sum of the square of the errors, a scalar value 
S , from the following matrix equation: 

bbBccHcbbbAcAcbcAAc ee TTTTTTTTTTT +−=+−−== 2S  (I.8) 

From basic mathematical theory, the minimum value S  must satisfy the following 
M equations: 
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Application of Equation (I.9) to Equation (I.8) yields the following typical matrix 
equation in which each term is a scalar: 
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Hence, all M equations can be written as the following matrix equation: 
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Therefore, the vector of constants c  can be determined from the solution of the 
following matrix equation: 

BHc =  (I.12) 

Because the positive-definite symmetric matrix AAH T= and bAB T= , the 
multiplication of the observational equations by TA produces the same set of 
equations. Therefore, it is not necessary to perform the formal minimization 
procedure each time one uses the least square method. 

I.3 CALCULATION OF STRESSES WITHIN FINITE ELEMENTS 
The basic equilibrium equation of a finite element system, as produced by the 
application of the principle of minimum potential energy, can be written as a 
summation of element contributions in the following form: 
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where ik is a typical element stiffness, u is the element node displacements and 
if is the element nodal forces, or stress resultants. The external node loads R are 

the specified point loads, the body forces that are integrated over the element 
volume, the consistent nodal loads associated with surface tractions and thermal 
loads. Those external nodal loads are in exact equilibrium with the sum of the 
forces acting on the elements. 
The original development of the finite element method was presented as an 
extension of structural analysis in which node point equilibrium was the 
fundamental starting point. Therefore, the accuracy of the element nodal forces 
was apparent. Unfortunately, the use of abstract variational methods in modern 
computational mechanics has tended to make this very important equilibrium 
property obscure. Hence, using virtual work and the method of least square, one 
can calculate element stresses directly from nodal forces. 
The consistent stresses within a finite element, developed using displacement 
functions, normally do not satisfy the fundamental equilibrium equations. From 
Equation (2.1), the three-dimensional equilibrium equations, written in a global x, 
y, and z reference system, are: 
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Those equations, which are fundamental laws of physics, are always exactly 
satisfied within a real structure; therefore, it is very important that the stress 
distribution calculated within elements of a finite element system satisfy those 
equations. To accomplish that objective for three-dimensional solids, the assumed 
stress distribution satisfies those equations and is of the following form: 
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      or, Pcs =  (I.15) 
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where P  is a 6 by 21 array that is a function of the global x, y and z reference 
system. 
The element node forces can be expressed in terms of the assumed stress 
distribution by the direct application of the principle of virtual work in which the 
virtual displacements d are of the same form as the basic displacement 
approximation. Or, from Equation (6.3), the virtual displacements, including 
incompatible modes, are: 
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If the virtual and incompatible displacements are all set to one, the following 
equation can be used to calculate node forces for an eight-node solid element: 
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The 33 by 21 matrix Q is calculated using standard numerical integration.  The 
forces associated with the nine incompatible modes are zero. 
The system of equations is approximately solved by the least square method, 
which involves the solution of: 

fQQcQ TT =   or    BHc =  (I.18) 

After c is evaluated for each load condition, the six components of stress at any 
point (x,y,z) within the element can be evaluated from Equation (I.15). 


