
APPENDIX G 

NUMERICAL INTEGRATION 
Exact Integration of Approximate Solutions  

May Not Produce the Most Realistic Results 
 

G.1 INTRODUCTION 

{ XE "Numerical Integration Rules" }Traditional mathematics education 
implies that exact integration should be used whenever possible. In fact, 
approximate numerical integration is only recommended in cases where exact 
integration is not possible. However, in the development of finite element 
stiffness matrices, which are based on approximate displacement functions that 
do not satisfy equilibrium, it has been found that approximate numerical 
integration methods can produce more accurate results, and converge faster, than 
exact integration. 

{ XE "Numerical Integration Rules:5 Point 2D Rule" }{ XE "Numerical 
Integration Rules:8 Point 2D Rule" }{ XE "Quadrature Rules" }In this appendix, 
one-, two- and three-dimensional numerical integration formulas will be 
developed and summarized. These formulas are often referred to as numerical 
quadrature rules. The term reduced integration implies that a lower order 
integration formula is used and certain functions are intentionally neglected. In 
order that the integration rules are general, the functions to be integrated must be 
in the range –1.0 to +1.0. A simple change of variable can be introduced to 
transform any integral to this natural reference system. For example, consider the 
following one-dimensional integral: 
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integral to be written as:  
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It is apparent that:  
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The mathematical term J is defined as the Jacobian of the transformation. For 
two- and three-dimensional integrals, the Jacobian is more complicated and is 
proportional to the area and volume of the element respectively. Normally the 
displacement approximation is written directly in the three-dimensional 
isoparametric reference system r, s and t. Therefore, no change of variable is 
required for the function to be integrated. 

G.2 ONE-DIMENSIONAL GAUSS QUADRATURE 

{ XE "Quadrature Rules" }The integration of a one-dimensional function requires 
that the integral be written in the following form: 
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The integral is evaluated at the Gauss points ir and the corresponding Gauss 
weighting factors are iw . To preserve symmetry, the Gauss points are located at the 
center or in pairs at equal location from the center with equal weights. 
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Let us consider the case where the function to be integrated is a polynomial of 
the form n
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It is apparent that the integrals of the odd powers of the polynomial are zero. The 
exact integration of the even powers of the polynomial produce the following 
equation: 

....
5
2

3
22

1
2)( 420

1

1

1

1

+++=
+

=== ∑∑∫∫
−

−

−

aaa
n

adrradrrfI
n

n

n

n
nr  (G.6) 

A one to three point rule is written as: 
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Hence, from Equations (G.5) and (G.7), a one point integration rule at 0=r  is: 
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Similarly, a two-point integration rule at α±=r  produces: 
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Equating the coefficients of 20 aa  and produces the following equations: 
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A three-point integration rule requires that: 
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Equating the coefficients of 20 aa  and produces the following equations: 
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The solution of these three equations requires that: 
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Note that the sum of the weighting functions for all one-dimensional integration 
rules are equal to 2.0, or the length of the integration interval from –1 to +1. 
Clearly one can develop higher order integration rules using the same approach 
with more integration points. It is apparent that the Gauss method using N points 
will exactly integrate polynomials of order 2N-1 or less. However, finite element 
functions are not polynomials in the global reference system if the element is not 
a rectangle. Therefore, for arbitrary isoparametric elements, all functions are 
approximately evaluated. 

G.3 NUMERICAL INTEGRATION IN TWO DIMENSIONS 

The one-dimensional Gauss approach can be extended to the evaluation of two-
dimensional integrals of the following form: 
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Using one-dimensional Gauss rules in both the r and s directions, Equation 
(G.14) can be evaluated directly. Two by two integration will require four points 
and three by three integration requires nine points. For two dimensions, the sum 
of the weighting factors jiww will be 4.0 or, the area of the element in the natural 
reference system. 
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G.4 AN EIGHT-POINT TWO-DIMENSIONAL RULE 

It is possible to develop integration rules for two-dimensional elements that 
produce the same accuracy as the one-dimensional Gauss rules using fewer 
points. A general, two-dimensional polynomial is of the following form: 
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A typical term in Equation (G.15) may be integrated exactly. Or: 
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A two-dimensional N point integration rule can be written as: 
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The eight integration points, shown in Figure G.1, produce a two-dimensional 
rule that can be summarized as:  
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Equating all non-zero terms in the integrated polynomial of the fifth order 
produces the following four equations in terms of four unknowns: 
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Figure G.1 Two-Dimensional Eight-Point Integration Rule 

The solution of these equations produces the following locations of the eight 
points and their weighting factors: 
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It is apparent that the eight-point two-dimensional rule has the same accuracy as 
the 3 by 3 Gauss rule. Note that the sum of the eight weighting factors is 4.0, the 
area of the element. 

G.5 AN EIGHT-POINT LOWER ORDER RULE 

A lower order, or reduced, integration rule can be produced by not satisfying the 
equation associated with 40a  in Equation G.19. This allows the weighting factor 

βw  to be arbitrarily specified. Or: 
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Therefore, if 0=βw  the rule reduces to the 2 by 2 Gauss rule. If βw is set to 
40/49, the accuracy is the same as the 3 by 3 Gauss rule. 
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G.6 A FIVE-POINT INTEGRATION RULE 

Using the same approach, a five-point integration rule, shown in Figure G.2, can 
be produced. 

 

Figure G.2 Five-Point Integration Rule 

The two-dimensional five-point rule can be written as: 
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Equating all non-zero terms in the integrated polynomial of the third order 
produces the following two equations in terms of three unknowns: 
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This has the same, or greater, accuracy as the 2 by 2 Gauss rule for any value of 
the center node weighting value. The two-dimensional five-point numerical 
integration rule is summarized as: 
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This equation is often used to add stability to an element that has rank deficiency 
when 2 by 2 integration is used. For example, the following rule has been used 
for this purpose: 

5776391.0999.0004.0 =α== α and      ww  (G.25) 

Because the five-point integration rule has a minimum of third order accuracy for 
any value of the center weighting value, the following rule is possible: 

00.13/13/80 =α== α and      ww  (G.26) 

Therefore, the integration points are at the center node and at the four node points 
of the two-dimensional element. Hence, for this rule it is not necessary to project 
integration point stresses to estimate node point stresses. 

G.7 THREE-DIMENSIONAL INTEGRATION RULES 

The one dimensional Gauss rules can be directly extended to numerical 
integration within three dimensional elements in the r, s and t reference system. 
However, the 3 by 3 by 3 rule requires 27 integration points and the 2 by 2 by 2 
rule requires 8 points. In addition, one cannot derive the benefits of reduced 
integration from the direct application of the Gauss rules. Similar to the case of 
two-dimensional elements, one can produce more accurate and useful elements 
by using fewer points. 

{ XE "Numerical Integration Rules:14 Point 3D Rule" }First, consider a three-
dimensional, 14-point, numerical integration rule that is written in the following 
form: 
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A general, three-dimensional polynomial is of the following form: 

lm

lmn

n
nml tsratsrf ∑=

,,

),,(  (G.28) 

A typical term in Equation (G.27) may be integrated exactly. Or: 
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If n, m and l are all even numbers, Equation (G.29) is non-zero; however, for all 
other cases, the integral is zero. As in the case of two dimensions, equating all 
non-zero terms of the fifth order produces the following set of four equations in 
terms of four unknowns: 
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The exact solution of these equations produces the following locations and 
numerical weighting values: 
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Note that the sum of the weighting values is equal to 8.0, the volume of the 
element. 

A nine-point numerical integration rule, with a center point, can be derived that 
has the following form: 
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The nine-point rule requires that the following equations be satisfied: 
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This is a third order rule, where the weight at the center point is arbitrary, that 
can be summarized as  
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A small value of the center point weighting function can be selected when the 
standard 2 by 2 by 2 integration rule produces a rank deficient stiffness matrix.  

In addition, the following nine-point three-dimensional rule is possible: 
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For this third order accuracy rule, the eight integration points are located at the 
eight nodes of the element. 

A six-point three-dimensional integration rule can be developed that has the six 
integration points at the center of each face of the hexahedral element. The form 
of this rule is: 
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Equating all non-zero terms up to the third order produces the following two 
equations: 
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{ XE "Numerical Integration Rules:6 Point 3D Rule" }Therefore, the location of 
the integration points and weighting values for the six point rule is: 
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The author has had no experience with this rule. However, it appears to have 
some problems in the subsequent calculation of node point stresses. 

G.8 SELECTIVE INTEGRATION 

{ XE "Selective Integration" }One of the first uses of selective integration was to 
solve the problem of shear locking in the four-node plane element. To eliminate 
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the shear locking, a one-point integration rule was used to integrate the shear 
energy only. A 2 by 2 integration rule was used for the normal stress. This 
selected integration approach produced significantly improved results. Since the 
introduction of corrected incompatible elements, however, selective integration is 
no longer used to solve this problem. 

For many coupled field problems, which involve both displacements and 
pressure as unknowns, the use of different order integration on the pressure and 
displacement field may be required to obtain accurate results. In addition, for 
fluid-like elements, a different order integration of the volume change function 
has produced more accurate results than the use of the same order of integration 
for all variables. 

G.9 SUMMARY 

In this appendix, the fundamentals of numerical integration in one, two and three 
dimensions are presented. By using the principles presented in this appendix, 
many different rules can be easily derived  

The selection of a specific integration method requires experimentation and a 
physical understanding of the approximation used in the formulation of the finite 
element model. The use of reduced integration (lower order) and selective 
integration has proven to be effective for many problems. Therefore, one should 
not automatically select the most accurate rule. Table G.1 presents a summary of 
the rules derived in this appendix. 
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Table G.1 Summary of Numerical Integration Rules 
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