
 

APPENDIX F 

A DISPLACEMENT-BASED BEAM 
ELEMENT WITH SHEAR 

DEFORMATIONS 
                      Never use a Cubic Function Approximation 

for a Non-Prismatic Beam  

F.1 INTRODUCTION 
{ XE "Shearing Deformations" }In this appendix a unique development of a 
displacement-based beam element with transverse shearing deformations is 
presented. The purpose of this formulation is to develop constraint equations that 
can be used in the development of a plate bending element with shearing 
deformations. The equations developed, which are based on a cubic displacement, 
apply to a beam with constant cross-section subjected to end loading only. For 
this problem both the force and displacement methods yield identical results. 
To include shearing deformation in plate bending elements, it is necessary to 
constrain the shearing deformations to be constant along each edge of the 
element. A simple approach to explain this fundamental assumption is to consider 
a typical edge of a plate element as a deep beam, as shown in Figure F.1. 
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Figure F.1 Typical Beam Element with Shear Deformations 

F.2 BASIC ASSUMPTIONS 
In reference to Figure F.1, the following assumptions on the displacement fields 
are made: 

First, the horizontal displacement caused by bending can be expressed 
in terms of the average rotation, θ , of the section of the beam using 
the following equation:   

θ z- = u   (F.1) 

where z  is the distance from the neutral axis. 

Second, the consistent assumption for cubic normal displacement is 
that the average rotation of the section is given by: 

θθθθ ∆N + N + N = 3j2i1   (F.2) 
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The cubic equation for the vertical displacement w  is given by: 

241321 ββ NNwNwNw ji +++=   (F.3a) 

where: 

2
s - 1 = N 1 ,  

2
s+ 1 = N 2 ,  s - 1 = N 2

3   and  )s - (1 s = N 2
4  (F.3b) 

Note that the term θ∆− )1( 2s  is the relative rotation with respect to a 
linear function; therefore, it is a hierarchical rotation with respect to 
the displacement at the center of the element. One notes the simple 
form of the equations when the natural coordinate system is used. 

It is apparent that the global variable x  is related to the natural 

coordinate s  by the equation sLx
2
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Third, the elasticity definition of the “effective” shear strain is: 
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∂ , the evaluation of the shear strain, Equation (F.5), 

produces an expression in terms of constants, a linear equation in 
terms of s  and a parabolic equation in terms of s2 . Or: 
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If the linear and parabolic expressions are equated to zero, the following 
constraint equations are determined: 

) - ( 
8
L = ji1 θθβ  (F.7a) 

θβ ∆
6
L = 2    (F.7b) 

The normal displacements, Equation (F.2), can now be written as: 
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Also, the effective shear strain is constant along the length of the beam and is 
given by: 
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Now, the normal bending strains for a beam element can be calculated directly 
from Equation (2.1) from the following equation: 
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In addition, the bending strain xε can be written in terms of the beam curvature 
term ψ , which is associated with the section moment M . Or: 

ψε zx =  (F.11) 

The deformation-displacement relationship for the bending element, including 
shear deformations, can be written in the following matrix form: 



SHEAR DEFORMATIONS IN BEAMS APPENDIX F-5 























∆









−−−−

−
=









θ

θ
θ

γ
ψ

j

i

j

i

xz w
w

LLL
s

L 3/2112/2/
400111    or, uBd =   (F.12) 

The force-deformation relationship for a bending element is given by: 
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     or,  ∆σ dCf =  (F.13) 

 

where E  is Young' s modulus, Gα  is the effective shear modulus and V is the 
total shear acting on the section.  

The application of the theory of minimum potential energy produces a 5 by 5 
element stiffness matrix of the following form: 

dsL
∫= CBBK T

2
 (F.14) 

Static condensation is used to eliminate θ∆  to produce the 4 by 4 element 
stiffness matrix.  

F.3 EFFECTIVE SHEAR AREA 
{ XE "Effective Shear Area" }For a homogeneous rectangular beam of width "b" 
and depth "d," the shear distribution over the cross section from elementary 
strength of materials is given by: 
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where, 0τ  is the maximum shear stress at the neutral axis of the beam. The 
integration of the shear stress over the cross section results in the following 
equilibrium equation: 

V
bd
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0 =τ  (F.16) 

The shear strain is given by: 
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The internal strain energy per unit length of the beam is: 
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The external work per unit length of beam is:  
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Equating external to internal energy we obtain: 

xzbdGV γ
6
5

=  (F.20) 

Therefore, the area reduction factor for a rectangular beam is: 

6
5

=α  (F.21) 

For non-homogeneous beams and plates, the same general method can be used to 
calculate the shear area factor. 


