

APPENDIX C

 SOLUTION OR INVERSION OF
LINEAR EQUATIONS

 The Computer Time Required to Solve a
Symmetric Set of “N “ Linear Equations

Is Approximately 1/6th the Computer Time
Required to Multiply Two “N By N” Matrices

C.1 INTRODUCTION

{ XE "Solution of Equations" }The solution of a large set of equations by hand
calculations is a tenuous and time-consuming process. Therefore, before 1960 the
majority of structural analysis techniques were based on approximations and
computational tricks. Many of those methods, such as moment distribution,
allowed the engineer to gain physical insight into the behavior of structures and
were forgiving with respect to human computational errors. It was very common
for an experienced structural engineering human-computer to predict the answer
to within two significant figures before performing any calculations. At the
present time, however, with the assistance of an inexpensive personal computer
and efficient computational methods, the structural engineer can solve over 1,000
equations in a few seconds.

{ XE "Cholesky" }{ XE "Matrix Inversion" }The fundamental method currently
used to directly solve sets of equilibrium equations is the Gauss elimination that
was first used in 1826. Gauss also worked with approximate approaches that
resulted in the Gauss-Seidel iterative method in 1860. Most of the methods

APPENDIX C-2 STATIC AND DYNAMIC ANALYSIS

presented in the last 150 years, such as Cholesky (1916) and Grout (1938), are
numerically equivalent to the Gauss elimination method; however, they were
easier to use for hand calculations. A modified form of the Gauss elimination
method can also be used for matrix inversion.

{ XE "Cramer's Rule" }Cramer’s rule and the theory of determinates, which are
presented by many mathematicians as fundamental to matrix analysis, are
abstract theorems and are not necessary to understand matrix notation. It is easily
shown that the use of Cramer’s rule to solve equations is very numerically
inefficient (approximately N! numerical operations) and should never be used to
solve practical problems in all fields of engineering.

The author’s “hobby” has been the writing of numerically efficient computer
programs for the solution of equations. This “pastime” has resulted in the
publication of several papers on this topic[1, 2, 3, 4]. Most of this development is
summarized in this appendix; therefore, it is not necessary to read the references
to fully understand the numerical algorithms presented in this section.

C.2 NUMERICAL EXAMPLE

To illustrate the detailed numerical operations required to solve a set of linear
equations by the Gauss elimination method, consider the solution of the
following three equations:

0.20.30.40.5 321 =++ xxx (C.1)

0.10.40.70.4 321 −=++ xxx (C.2)

0.30.40.40.3 321 =++ xxx (C.3)

First, solve Equation (C.1) for 1x :

321 60.080.040.0 xxx −−= (C.4)

Second, substitute Equation (C.4) into Equations (C.2) and (C.3) to eliminate 1x
and the following two equations are obtained:

60.260.180.3 32 −=+ xx (C.5)

SOLUTION OF EQUATIONS APPENDIX C-3

80.120.260.1 32 =+ xx (C.6)

Third, solve Equation (C.5) for 2x :

32 42105.068421.0 xx −−= (C.7)

Fourth, substitute Equation (C.7) into Equation (C.6) to eliminate 2x , and the
following equation is obtained:

8865.13 =x (C.8a)

Back-substitute Equation (C.8a) into Equations (C.7) to obtain:

4829.12 −=x (C.8b)

Back-substitute Equations (C.8a) and (C8.b) into (C.4) to obtain:

4482801 .x = (C.8c)

Therefore, matrix notation is not necessary to solve a set of linear equations.
However, the Gauss elimination algorithm can be summarized in a general
subscript notation that can be programmed for the computer for an arbitrary
number of equations.

It is important to point out that the back-substitution Equations (C.4), (C.7) and
(C.8) can be written as the following matrix equation:

yLT

x
x
x

=















−=

































8865.1
68421.0

40000.0

00000.100
42105.000.10
60000.080.000.1

3

2

1

 (C.9)

It will be later shown that Equation (C.9) is identical to the equation used in the
matrix factorization solution method.

C.3 THE GAUSS ELIMINATION ALGORITHM

To develop a computer program for the solution of equations, it is first necessary
to uniquely define the numerical procedure, or algorithm, by a finite number of

APPENDIX C-4 STATIC AND DYNAMIC ANALYSIS

clearly defined steps. For Gauss elimination, the initial set of N equations can be
written as:

Nnbxa
N

j
njnj1

1

==∑
=

 (C.10)

Starting with the first equation, 1=n , we can solve for nx by dividing all terms
in equation n by nna . Or:

∑∑
+=+=

−=−=
N

nj
jnjn

N

nj
j

nn

nj

nn

n
n xabx

a
a

a
b

x
11

 (C.11)

Substitution of Equation (C.11) into a typical remaining equation i yields:

Neqnibxababxaaa
N

nj
ijij

N

nj
nnjijnjinij ...1)(

11

+==−=− ∑∑
+=+=

 or, (C.12)

{ XE "Algorithms for:Gauss Elimination" }This simple Gauss elimination
algorithm is summarized in a FORTRAN subroutine shown in Table C.1. Note
that within a computer subroutine, the modified terms ib and ija can be stored in

the same locations as the original terms ib and ija . Therefore, after Equations

(C.11) and (C.12) have been applied N times, the unknown Nx is evaluated and
stored in the same location as Nb . All other unknowns are evaluated using the

back-substitution Equation (C.11). The FORTRAN subroutine allows for an
arbitrary number of load vectors. Therefore, for large systems, additional load
vectors do not increase the number of numerical operations significantly.

An examination of the subroutine clearly indicates the approximate number of
numerical operations for L load conditions is given by :

LNNNop += 3

3
1 (C.13)

SOLUTION OF EQUATIONS APPENDIX C-5

Table C.1 FORTRAN Subroutine to Solve Equations by Gauss Elimination

 SUBROUTINE GAUSSEL(A,B,NEQ,LL)
 IMPLICIT REAL*8 (A-H,O-Z)
C---- POSITIVE DEFINITE EQUATION SOLVER ---
 DIMENSION A(NEQ,NEQ),B(NEQ,LL)
C---- FORWARD REDUCTION ------------------
 DO 500 N=1,NEQ
C---- CHECK FOR POSITIVE-DEFINITE MATRIX –
 IF (A(N,N).LE.0.0D0) THEN
 WRITE (*,*) ‘MATRIX NOT POSSITIVE DEFINITE’
 STOP
 ENDIF
C---- DIVIDE B(N,L) BY A(N,N) -------------------------
 DO 100 L=1,LL
 100 B(N,L) = B(N,L)/A(N,N)
C---- DIVIDE A(N,J) BY A(N,N) -------------------------
 IF (N.EQ.NEQ) GO TO 500 ! CHECK FOR LAST EQUATION
 DO 200 J=N+1,NEQ
 200 A(N,J) = A(N,J)/A(N,N)
C---- MODIFY REMAINING EQUATIONS ----------------------
 DO 500 I=N+1,NEQ
 DO 300 J=N+1,NEQ
 300 A(I,J) = A(I,J) - A(I,N)*A(N,J)
 DO 400 L=1,LL
 400 B(I,N) = B(I,L) - A(I,N)*B(N,L)
C
 500 CONTINUE ! ELIMINATE NEXT UNKNOWN
C---- BACK-SUBSTITUTIONS ------------------------------
 600 N = N – 1
 IF (N.EQ.0) RETURN
 DO 700 L=1,LL
 DO 700 J=N+1,NEQ
 700 B(N,L) = B(N,L) – A(N,J)*B(N,L)
 GO TO 600
 END

Note that the FORTRAN program statements very closely resemble the equations
given by the Gauss elimination algorithm. As one notes, the major restriction on
this subroutine is that it cannot solve systems that have zero terms on the
diagonal of the matrix. However, it can be proven that non-singular stiffness and
flexibility matrices will not have zero terms on the diagonal if the displacement

nu and associated force nR have the same sign convention. Therefore, the
subroutine as presented can be used to solve many small structural systems.

APPENDIX C-6 STATIC AND DYNAMIC ANALYSIS

C.4 SOLUTION OF A GENERAL SET OF LINEAR EQUATIONS

{ XE "Algorithms for:Solution of General Set of Equations" }It is very easy to
modify the subroutine presented in Table C.1 to solve any non-singular sets of
linear equations that have zero terms on the diagonal of the A matrix during the
elimination process. The same Gauss elimination algorithm is used to solve the
general set of equations with a very minor modification. The FORTRAN
subroutine for this general Gauss elimination algorithm is given in Table C.2.

Before eliminating the next unknown, it is only necessary to search for the largest
term that exists in the remaining equations. The largest term is then moved to the

nna position by the interchange of the order of the equations (row interchange)
and the interchange of the order of the unknowns (column interchange). The
column interchange must be recorded to recover the unknowns in their original
order.

If after r equations have been eliminated and all the remaining terms in the A
matrix are zero (or near zero compared to their initial values), the matrix is
singular and the equations cannot be solved. For this case, the matrix is said to
have a rank of r. If the set of equations represents force-equilibrium, it simply
means that the stiffness matrix has N – r unstable modes or zero energy modes.
This is an excellent physical illustration of a rank deficient matrix.

C.5 ALTERNATIVE TO PIVOTING

{ XE "Pivoting" }An alternative method to pivoting can be used to solve a non-
positive definite set of equations. Any set of equations can be made symmetrical
and positive-definite by the multiplication of both sides of the equation by the
transpose of the nonsymmetrical matrix. Or, Equation (C.10) can be written as

BA =x (C.14)

where, AAA T= is symmetric; and, the effective load is BAB T= . The
additional numerical effort involved in the matrix multiplication is recovered by
the reduction in numerical effort required to solve a symmetrical set of equations.
In addition, the interchange of rows and columns, or pivoting, is eliminated.

SOLUTION OF EQUATIONS APPENDIX C-7

Table C.2 FORTRAN Subroutine for Solution of a General Set of Equations
 SUBROUTINE SOLVE(A,B,IEQ,NEQ,NLV)
C---- SOLUTION OF GENERAL SET OF LINEAR EQUATIONS
C WHERE
C A = NEQ x NEQ NON-SYMMETRIX, NON-POSITIVE
C DEFINITE MATRIX
C B = NEQ x NLV LOAD MATRIX TO BE REPLACED BY
C SOLUTION
C IEQ = TEMPORARY STORAGE ARRAY OF NEQ
C INTERGERS
C---
 REAL*8 A(NEQ,NEQ),B(NEQ,NLV),D,BIG
 INTEGER*4 IEQ(NEQ),NEQ,NLV,II,JJ,I,J,L,N
C---- SET INITIAL UNKNOWN NUMBERS ----------------
 DO 100 N=1,NEQ
 100 IEQ(N) = N
C---- ELIMINATE UNKNOWNS N=1,2....NEQ -----------
 DO 1000 N=1,NEQ
C---- (1) LOCATE LARGEST TERM REMAINING ----------
 IF (N.NE.NEQ) THEN
 BIG = ABS(A(N,N))
 II = N
 JJ = N
 DO 200 I=N,NEQ
 DO 200 J=N,NEQ
 IF (ABS(A(I,J)).GT.BIG) THEN
 BIG = ABS(A(I,J))
 II = I
 JJ = J
 ENDIF
 200 CONTINUE
C---- (2) CHECK FOR SINGULAR MATRIX --------------
 IF (BIG.EQ.0.0) THEN
 WRITE (*,*) ' MATRIX IS SINGULAR '
 PAUSE 'CORRECT DATA AND RERUN'
 STOP
 ENDIF
C---- (3) INTERCHANGE COLUMNS --------------------
 DO 300 I=1,NEQ
 D = A(I,JJ)
 A(I,JJ) = A(I,N)
 300 A(I,N) = D
C---- (4) KEEP TRACK OF EQUATION NUMBERS ---------
 J = IEQ(N)
 IEQ(N) = IEQ(JJ)
 IEQ(JJ)= J
C---- (5) INTERCHANGE ROW "N" AND ROW "II" -------
 DO 400 J=N,NEQ
 D = A(N,J)
 A(N,J) = A(II,J)
 400 A(II,J)= D
C---- (6)INTERCHANGE LOADS -----------------------
 DO 500 L=1,NLV

 D = B(N,L)
 B(N,L) = B(II,L)
 500 B(II,L)= D
 ENDIF
C---- (6)INTERCHANGE LOADS ------------
 DO 500 L=1,NLV
 D = B(N,L)
 B(N,L) = B(II,L)
 500 B(II,L)= D
 ENDIF
C---- (7) DIVIDE LOADS BY DIAGONAL TERM
 550 DO 600 L=1,NLV
 600 B(N,L) =B(N,L)/A(N,N)
C---- (8) DIVIDE ROW BY DIAGONAL TERM -
 IF (N.NE.NEQ) THEN
 DO 700 J=N+1,NEQ
 700 A(N,J) = A(N,J)/A(N,N)
C---- (9) SUBSTITUTE IN REMAINING Eq.--
 DO 900 I=N+1,NEQ
 DO 800 J=N+1,NEQ
 800 A(I,J) = A(I,J) - A(I,N)*A(N,J)
 DO 900 L=1,NLV
 900 B(I,L) = B(I,L) - A(I,N)*B(N,L)
 ENDIFC
 1000 CONTINUE
C---- BACK-SUBSTITUTION ---------------
 IF (NEQ.EQ.1) GO TO 1700
 DO 1300 N=NEQ-1,1,-1
 DO 1200 L=1,NLV
 IF (N.NE.NEQ) THEN
 DO 1100 J=N+1,NEQ
 1100 B(N,L) = B(N,L) - A(N,J)*B(J,L)
 ENDIF
 1200 CONTINUE
 1300 CONTINUE
C---- RETURN UNKNOWNS IN ORIGINAL ORDER
 DO 1600 N=1,NEQ
 DO 1500 I=N,NEQ
 II = IEQ(I)
 IF(II.EQ.N) THEN
 DO 1400 L=1,NLV
 D = B(N,L)
 B(N,L) = B(I,L)
 1400 B(I,L)= D
 IEQ(I) = IEQ(N)
 GO TO 1600 !CHECK NEXT UNKNOWN
 ENDIF
 1500 CONTINUE
 1600 CONTINUE
C---- RETURN TO CALLING PROGRAM -------
 1700 RETURN
 END

Mathematicians do not recommend this approach because it increases the
"condition number" and the theoretical error. However, for small, well-
conditioned systems, it has been the author’s experience that this approach works
very well. It also can be proven that this approach will minimize the sum of the
square of the error terms.

APPENDIX C-8 STATIC AND DYNAMIC ANALYSIS

C.6 MATRIX INVERSION

{ XE "Algorithms for:Matrix Inversion" }{ XE "Matrix Inversion" }The inverse
of a matrix can be obtained by setting the matrix B to a unit matrix, I, and then
solving the following equation for the N by N x matrix (the inverse of A):

IAABxA -1 == or (C.15)

The major problem with this approach is that it requires more numerical
operations and computer storage than the direct application of the modified
Gauss algorithm. It is only necessary to write an algorithm to interchange

nn bx with and then apply it with Nn1= . A typical equation is:

Nibxa
Neq

j
ijij1

1

==∑
=

 (C.16)

By dividing the n th equation by nna , it can be written as:

∑ ∑
−

= +=

=−+−
1

1 1

n

j
n

N

nj
jnj

nn

n
jnj xxa

a
b

xa (C.17)

Now, nx can be eliminated from all equations before and after equation n. It is
then moved to the right-hand side of the equation, and nb is moved to the left-

hand side of the equation. Or:

Nnni

bxaaab
a
a

xaaa
n

j
i

N

nj
jnjinijn

nn

jn
jnjinij

..1,..1

)()(
1

1 1

+=

=−+−−∑ ∑
−

= +=

for

 (C.18)

Hence, the new set of Equations can be written, after n transformations, in matrix
form as:

(n)(n)(n) bxA = (C.19)

After N transformations:

xbbxAA 1 −=−== −)()(and , NN(N) (C.20)

Using this modified Gauss inversion algorithm, it can easily be shown that a
closed form solution for a 2 by 2 system is

SOLUTION OF EQUATIONS APPENDIX C-9

















−

−

−
=









2

1

1121

1222

211222112

1 1
b
b

aa
aa

aaaax
x

 (C.21)

A FORTRAN subroutine that summarizes the matrix inversion algorithm is given
in Table C.3. Note that the inverse can be stored in the same locations as the
original matrix and no new computer storage is required.

Table C.3 Subroutine to Invert a Matrix by Modified Gauss Elimination

 SUBROUTINE INVERT(A,NMAX)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(NMAX,NMAX)
C---- MATRIX INVERSION BY MODIFIED GAUSS ELIMINATION
 DO 200 N=1,NMAX
 D = A(N,N) ! SAVE DIAGONAL TERM
C---- DIVIDE ROW BY DIAGONAL TERM ------------------
 DO 100 J=1,NMAX
 100 A(N,J) = -A(N,J)/D
C---- MODIFY OTHER EQUATIONS -----------------------
 DO 150 I=1,NMAX
 IF(N.EQ.I) GO TO 150
 DO 140 J=1,NMAX
 IF(N.EQ.J) GO TO 140
 A(I,J) = A(I,J) + A(I,N)*A(N,J)
 140 CONTINUE
C---- MODIFY COLUMN --------------------------------
 150 A(I,N) = A(I,N)/D
C---- INVERT DIAGONAL TERM -------------------------
 A(N,N) = 1.0/D
 200 CONTINUE ! REDUCE NEXT EQUATION
 RETURN ! INVERSION COMPLETE
 END

It should be emphasized that matrix inversion is almost never required in
structural analysis. The only exception is the inversion of the 6 by 6 strain-stress
matrix. Many textbooks imply that if a large number of load vectors exists, the
additional numerical effort associated with matrix inversion is justifiablenot
true.

An examination of the matrix inversion subroutine indicates that the approximate
number of numerical operations, as previously defined, to invert an N by N
matrix is approximately 3N . If there are L load vectors, the total number of
numerical operations to invert the matrix and multiply by the load matrix will be:

APPENDIX C-10 STATIC AND DYNAMIC ANALYSIS

LNNon 23.. += (C.22)

If the set of equations is solved directly by Gauss elimination, the total number of
numerical operations is:

LNNon 23

3
1.. += (C.23)

Therefore, matrix inversion is always inefficient compared to the direct solution
of equations by Gauss elimination. In addition, if a sparse or banded matrix is
inverted, a full matrix may be produced that would require a significant increase
in computer storage and execution time.

C.7 PHYSICAL INTERPRETATION OF MATRIX INVERSION

To illustrate the physical interpretation of the matrix inversion algorithm,
consider the force-deformation relationship for the simple beam shown in Figure
C.1.

jjM φ,

iiM φ,

L

jji

iji

M
L
EI

L
EI

M
L
EI

L
EI

=+

=+

φφ

φφ

42

24

Figure C.1 Force-Deformation Behavior of Simple Supported Beam

The force-deformation equations written in matrix form are:

SOLUTION OF EQUATIONS APPENDIX C-11









=





























j

i

j

i

M
M

L
EI

L
EI

L
EI

L
EI

φ
φ

42

24

 (C.24)

Note the first column of the stiffness matrix represents the moments developed at
the ends as a result of a unit rotation at i. The second column of the stiffness
matrix represents the moments developed at the ends as a result of a unit rotation
at j. By applying the inversion algorithm for n=1, the following equation is
obtained:









=























 −

j

i

j

i

M
M

L
EI

EI
L

φ
φ3

2
1

2
1

4 (C.25)

Each term in the modified matrix has a physical meaning. The first column, with
0=φ j , a unit moment applied at i produces a rotation of EIL 4/ at i and a

moment of 2/1 at j. The second column, with 0=jM , a unit rotation applied at
j produces a rotation of 2/1− at i and a moment of LEI /3 at j.

After application of the inversion algorithm for n=2, the following flexibility
equation is obtained:









=
















−

−

j

i

j

i

M
M

EI
L

φ
φ

42
24

12
 (C.26)

Therefore, the abstract mathematical procedure of matrix inversions has a very
physical interpretation. Each term in the matrix, after an interchange of nx and

nb , represents a displacement or force per unit of displacement or forces. It also
indicates, using the displacement method of structural analysis for the solution of
joint equilibrium equations, that the diagonal term has the units of stiffness and
cannot be negative or zero for a stable structural system; therefore, there is no
need to pivot during the solution algorithm.

APPENDIX C-12 STATIC AND DYNAMIC ANALYSIS

C.8 PARTIAL GAUSS ELIMINATION, STATIC CONDENSATION AND
SUBSTRUCTURE ANALYSIS

{ XE "Algorithms for:Partial Gauss Elimination" }{ XE "Algorithms for:Static
Condensation" }{ XE "Partial Gauss Elimination" }{ XE "Static Condensation" }{
XE "Substructure Analysis" }In the displacement method of structural analysis
the stiffness matrix times the joint displacements are equal to the external joint
loads. The application of the Gauss elimination algorithm to the solution of these
equilibrium equations has a very important physical interpretation. The initial
terms on the diagonal of the stiffness matrix are in the units of force per unit of
deformation with all other degrees of freedom in the structure fixed. The
elimination of an unknown displacement is equivalent to releasing the
displacement, and the loads are carried over to the other degrees of freedom in
the structure. The stiffness terms at the adjacent degrees of freedom are modified
to reflect that movement is allowed at the degrees of freedom eliminated.
Therefore, the solutions of the equilibrium equations by applying the Gauss
elimination algorithm to all degrees of freedom can be interpreted, by a structural
engineer over the age of fifty, as one giant cycle of moment distribution in which
iteration is not required.

What is of greater significance, however, is if the algorithm is stopped at any
point, the remaining equations represent the stiffness matrix with respect to the
degrees of freedom not eliminated. This substructure stiffness can be extracted
and used as a super element in another structural model. Also, the loads
associated with the eliminated displacements are carried over to the substructure
joints and must be applied to the new structural model. After the displacements
associated with the substructure joints have been found, the eliminated
displacements can be calculated by back-substitution.

This partial Gauss elimination algorithm is also called the static condensation
method. The algorithm and a FORTRAN subroutine are summarized in Table
C.4. Note that the stiffness matrix is still stored in square form; however, the
number of numerical operations is reduced by recognition of the symmetry of the
stiffness matrix, and some of the operations on zero terms are skipped.

Table C.4 Partial Gauss Elimination Algorithm and Subroutine

SOLUTION OF EQUATIONS APPENDIX C-13

 SUBROUTINE SUBSOL(K,R,NEQ,LEQ,LL,MOP)
 REAL*8 K(NEQ,NEQ),R(NEQ,LL),T,ZERO
C---- SUBSTRUCTURE EQUATION SOLVER - WHERE -------------------
C K = STIFFNESS MATRIX TO BE REDUCED
C R = LOAD VECTORS - REPLACED BY DISPLACEMENTS
C NEQ = TOTAL NUMBER OF EQUATIONS
C LEQ = NUMBER OF MASSLESS D.O.F. TO BE ELIMINATED
C LL = NUMBER OF LOAD VECTORS
C MOP = 0 TRIANGULARIZATION AND COMPLETE SOLUTION
C MOP = 1 TRIANGULARIZATION ONLY
C MOP = 2 LOAD REDUCTION ONLY
C MOP = 3 DISPLACEMENT RECOVERY ONLY
 DATA ZERO /0.0D0/
C---
 IF(MOP.EQ.3) GO TO 800 ! DISPLACEMENT RECOVERY ONLY
 IF(MOP.EQ.2) GO TO 500 ! LOAD REDUCTION ONLY
C---- TRIANGULARIZATION --------------------------------------
 DO 400 N=1,LEQ
 IF(K(N,N).LE.ZERO) STOP ' STRUCTURE UNSTABLE '
 IF (N.EQ.NEQ) GO TO 400 ! CHECK FOR LAST EQUATION
 DO 300 J=N+1,NEQ
 IF(K(N,J).NE.ZERO) THEN ! OPERATE ONLY ON NONZERO TERMS
 T = K(N,J)/K(N,N)
 DO 200 I=J,NEQ ! MODIFY OTHER EQUATIONS
 200 K(J,I) = K(J,I) - K(N,I)*T
 K(N,J) = T
 ENDIF
 300 CONTINUE ! END OF J LOOP
 400 CONTINUE ! END OF N LOOP
 IF(MOP.EQ.1) RETURN ! TRIAGULARIZE ONLY
C---- FORWARD REDUCTION OF LOAD VECTORS ----------------------
 500 DO 700 N=1,LEQ
 DO 650 L=1,LL ! REDUCE ALL LOAD VECTORS
 IF (N.EQ.NEQ) GO TO 650
 DO 600 J=N+1,NEQ
 600 R(J,L) = R(J,L) - K(N,J)*R(N,L)
 650 R(N,L) = R(N,L)/K(N,N)
 700 CONTINUE ! END OF N LOOP
 IF(MOP.EQ.2) RETURN ! RETURN TO CALLING PROGRAM
C---- RECOVERY OF DISPLACEMENTS ------------------------------
 800 DO 1000 NN=1,LEQ,1
 N = LEQ - NN + 1
 IF (N.EQ.NEQ) GO TO 1000 ! LAST EQUATION HAS BEEN SOLVED
 DO 900 L=1,LL ! RECOVER ALL LOAD CONDITIONS
 DO 900 J=N+1,NEQ
 900 R(N,L) = R(N,L) - K(N,J)*R(J,L)
 1000 CONTINUE ! END OF N LOOP
 RETURN ! RETURN TO CALLING PROGRAM
C---
 END

This subroutine can be used to solve a full set of equations. For this case, it is
apparent that the number of numerical operations required for a solution of a
complete set of equations is:

APPENDIX C-14 STATIC AND DYNAMIC ANALYSIS

LNNon 23

6
1.. += (C.27)

C.9 EQUATIONS STORED IN BANDED OR PROFILE FORM

{ XE "Banded Equations" }{ XE "Profile Storage of Stiffness Matrix" }A careful
examination of the Gauss elimination algorithm as applied to the global stiffness
matrix indicates that new terms in the stiffness matrix are only generated below
the first non-zero term in each column. Also, only the terms above the diagonal
need to be stored during the solution procedure. Therefore, the symmetric
stiffness matrix can be stored in banded or profile form, as indicated in Figure
C.2.

Figure C.2 Methods of Storage for Symmetric Stiffness Matrices

The banded form of storage for the stiffness matrix was used in the early years of
the development of structural analysis programs. For example, SAP-IV used a
blocked-banded approach. However, the banded storage method initially required
that the user number the nodes in an order that would minimize the bandwidth.
Later, bandwidth minimization algorithms were developed; however, a large
number of zero terms still existed within the band for most structural systems.

b

0

N

A. Rectangular Banded Storage B. Profile or Envelope Type of Storage

1 2

3

6 8

4

5 7

9
10
11
12

SYMMETRICAL
SYMMETRICAL

0

LD= 1 3 6 9 12 - - --

0

SOLUTION OF EQUATIONS APPENDIX C-15

The profile method of storage reduces the computer storage requirements and
reduces the operation on zero terms. For this method, the stiffness matrix is
stored in one dimensional form, from the first non-zero term in a column to the
diagonal term, as shown in Figure C.2.B. In addition, a one-dimensional integer
array, LD, indicates the location of the diagonal term for each column. The
profile storage method is used in most modern structural analysis programs.
Many different algorithms have been developed to reduce the number of
numerical operations and computer storage requirements for stiffness matrices.
Within the SAP90 and SAP2000 programs, three different algorithms are tried,
and the one that requires the minimum computer storage is used.

From the fundamental Gauss elimination equations, it is apparent that the banded
storage method requires the following number of numerical operations:

 LbNbbNNop +−= 22

3
1

2
1 (C.28)

Note that for a small half-bandwidth b, the number of numerical operations to
solve a set of equations can be very small, compared to the formation of element
matrices and the calculation of member forces and stresses.

In the case of profile storage, the number of numerical operations to solve the set
of equations can be estimated from:

LhhNop n

N

n
n 2

2
1

1

2 +=∑
=

 (C.29)

The column height is given by)1()(−−= nLDnLDhn . Note that both Equations
(C.28) and (C.29) reduce to Equation (C.27) for a full stiffness matrix.

C.10 LDL FACTORIZATION

{ XE "Algorithms for:LDL Factorization" }{ XE "LDL Factorization" }In books
on numerical analysis, the most common approach proposed to solve a set of
symmetric equations is the TLDL factorization, or decomposition, method. This
approach involves the identical number of numerical operations, computer
storage and accuracy as the Gauss elimination method; however, it lacks the
physical analogy that exists with the partial Gauss elimination method. On the

APPENDIX C-16 STATIC AND DYNAMIC ANALYSIS

other hand, the factorization approach has advantages in that the operations on
the stiffness and load matrices are separated. Also, error estimations can be
obtained from the method, and it can be directly extended to the solution of
eigenvector or Ritz vector analysis. In any case, we can use the advantages of
both approaches without being forced to use one or the other.

The set of linear equations to be solved is written in the following matrix form:

yxLbLDybxLDL b= Ax TT === where, or, or, (C.30)

where A is an N by N symmetric matrix that contains a large number of zero
terms. The N by M x displacement and b load matrices indicate that more than
one load condition can be solved at the same time. The solution of equations is
divided into the following three steps:

C10.1 Triangularization or Factorization of the A Matrix

The first step in the solution of the set of linear equations is to factor the A
matrix into the product of a lower triangular matrix L, with all diagonal terms
equal to 1.0, times an upper triangular matrix U. Or, in the case of a symmetric
matrix:

TLDLLUA == (C.31)

From the basic definition of matrix multiplication, the following equation can be
written:

UL = UL = A kjik

i

1=k
kjik

N

1=k
ij ∑∑ (C.32)

From Equation (C.32) a careful examination of the limits of the summation
indicates that the n th column of the U matrix and the n th row of the L matrix
can be calculated, in the order shown in Figure C.3, from the following
equations:

UL - A = U knik

1-i

1=k
inin ∑ (C.33)

D
U = L

jj

nj
nj (C.34)

SOLUTION OF EQUATIONS APPENDIX C-17

From Equation (C.34) the diagonal term is:

∑
−

=

==
1

1

n

k
knnknnnnnnnnnn ULAA - AU = D where (C.35)

APPENDIX C-18 STATIC AND DYNAMIC ANALYSIS

Figure C.3 Order of Calculation of the Rows and Columns in Factored Matrix

If these equations are evaluated in the appropriate order, it is possible to store the
LT matrix in the same locations as the original A matrix. Because the nnL are
always equal to one, the diagonal terms nnD can be stored on the diagonal of the
original matrix. Hence, it is possible to factor the matrix without additional
storage requirements. Note that the lower limit of the “k” summation can be
changed to the location of the first non-zero term in the column or row.

C10.2 Forward Reduction of the b Matrix

The next step in the solution of linear equations is to conduct a forward reduction
of the load vector by solving the following set of equations where xL =y T :

 b=y DL (C.36)

The solution is given by:

N1 = n yL -
D
b = y kmnk

1-n

1=knn

nm
nm ∑ (C.37)

LUA =
→=LUA

5

4

6

3

2

1 7 2n-1

2n

n th COLUMN

n th ROW

SOLUTION OF EQUATIONS APPENDIX C-19

C10.3 Calculation of x by Backsubstitution

It is apparent that the unknowns x can now be calculated from:

1 N= n yL - y = x kmkn

1-n

1=k
nmnm ∑ (C.38)

The forward reduction and back substitution is conducted for all load vectors
from m = 1 to the total number of load vectors. The fact that the factorization
phase is completely separate from the solution phase allows the factorized matrix
to be used for both the static and dynamic phase of the solution. FORTRAN
subroutines, using profile storage, are given in reference [3].

The determinant of TLDL is the product of the determinant of each matrix.
Hence, the product of the diagonal terms of the D matrix is the determinant of the
matrix. The determinant of a matrix is of little physical value. However, the
mathematical properties of the sequence of diagonal terms nnD are very
significant.

The three equation given by Equations (C.1), (C.2) and (C.3) can be factored as:
















































=

000.100
421.000.10
600.080.000.1

527.100
08.30
000.5

0.1421.6.0
0.00.18.0
0.00.00.1

DLLT (C.39)

Note that the L matrix is identical to the Gauss elimination back-substitution
matrix shown in Equation (C.9). Also,
















−=
















−=

8865.1
4829.1

44828.0
 and

8865.1
68421.0

40000.0
xy (C.40a and C.40b)

Therefore, there is very little difference between the factorization approach and
the Gauss elimination method.

APPENDIX C-20 STATIC AND DYNAMIC ANALYSIS

C.11 DIAGONAL CANCELLATION AND NUMERICAL ACCURACY

{ XE "Diagonal Cancellation" }{ XE "Numerical Accuracy" }The numerical
accuracy of the solution of a set of linear equations can be estimated by the
examination of the expression for the diagonal terms, Equation (C.35). Or, in
simplified form:

 nnnnnn A - A = D (C.41)

Where nnA is the original unmodified term in the matrix and nnA is the
modification to the term to produce the new diagonal term nnD . We know that if

nnD is zero, or very near zero, the matrix is singular and the solution algorithm
must be terminated. Within modern computer systems, numbers have a range of
approximately 300300 10 to10− ; therefore, an exact zero number is almost
impossible to detect because of round off errors. What is really important,
however, is the size of the original diagonal term compared to the reduced
diagonal term. Therefore, the number of significant decimal figures lost can be
estimated from:

)(log)(log.. 1010 AAlf nn −= (C.42)

Because all normal engineering calculations are completed within the computer
using approximately 15 significant figures, a loss of over 12 figures indicates that
significant errors may exist; hence, the structural engineer should be warned, and
the computer model of the structure examined. This problem exists if the model
lacks appropriate boundary conditions, a collapse mechanism exists or if
members with large relative stiffness are used.

C.12 SUMMARY

The most general approach for the solution, inversion and condensation of
equilibrium equations is Gauss elimination. In programming this method for use
in structural analysis programs, sparse storage and profile minimization [4] is
required to minimize the numerical effort. Diagonal cancellation must be checked
to detect numerical problems.

SOLUTION OF EQUATIONS APPENDIX C-21

For the solution of structural equilibrium equations, pivoting should not be used.
Before eliminating a degree of freedom, the diagonal term always represents the
stiffness associated with the degree of freedom. Hence, a zero or near zero
diagonal term indicates that the computational model of the structure is unstable.

Given the speed of a computer system, number of operations per second, it is
possible to accurately predict the computer time to solve a set of equations.
Whereas the computer time required by an iterative solver, which can be faster
for certain large systems, cannot be accurately predicted. In addition, the
triangularized stiffness matrix can be used directly to generate mode shapes
required for a dynamic analysis.

C.13 REFERENCES

1 Wilson, E. 1974. "The Static Condensation Algorithm," International
Journal for Numerical Methods in Engineering. Vol. 8. January. pp.
198-203.

2. { XE "Doherty, W. P." }Wilson, E.L., K. J. Bathe and W. P. Doherty. 1974.
"Direct Solution of Large Systems of Linear Equations,” Computers and
Structures. Vol. 4. January. pp. 363-372.

3. { XE "Dovey, H. H." }Wilson E.L., and H. H. Dovey. 1979. "Solution or
Reduction of Equilibrium Equations for Large Complex Structural
Systems," Advances in Engineering Software. Vol. 1, No. 1. pp. 19-25.

4. { XE "Hoit, M." }Hoit M. and E. L. Wilson. 1983. "An Equation Numbering
Algorithm Based on a Minimum Front Criterion," J. Computers and
Structures. Vol. 16, No. 1-4. pp. 225-239.

