
 

 

APPENDIX C 

   SOLUTION OR INVERSION OF 
LINEAR EQUATIONS 

 The Computer Time Required to Solve a 
Symmetric Set of “N “ Linear Equations  

Is Approximately 1/6th the Computer Time  
Required to Multiply Two “N By N” Matrices  

 

C.1 INTRODUCTION 

{ XE "Solution of Equations" }The solution of a large set of equations by hand 
calculations is a tenuous and time-consuming process. Therefore, before 1960 the 
majority of structural analysis techniques were based on approximations and 
computational tricks. Many of those methods, such as moment distribution, 
allowed the engineer to gain physical insight into the behavior of structures and 
were forgiving with respect to human computational errors. It was very common 
for an experienced structural engineering human-computer to predict the answer 
to within two significant figures before performing any calculations. At the 
present time, however, with the assistance of an inexpensive personal computer 
and efficient computational methods, the structural engineer can solve over 1,000 
equations in a few seconds.  

{ XE "Cholesky" }{ XE "Matrix Inversion" }The fundamental method currently 
used to directly solve sets of equilibrium equations is the Gauss elimination that 
was first used in 1826. Gauss also worked with approximate approaches that 
resulted in the Gauss-Seidel iterative method in 1860. Most of the methods 
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presented in the last 150 years, such as Cholesky (1916) and Grout (1938), are 
numerically equivalent to the Gauss elimination method; however, they were 
easier to use for hand calculations. A modified form of the Gauss elimination 
method can also be used for matrix inversion. 

{ XE "Cramer's Rule" }Cramer’s rule and the theory of determinates, which are 
presented by many mathematicians as fundamental to matrix analysis, are 
abstract theorems and are not necessary to understand matrix notation. It is easily 
shown that the use of Cramer’s rule to solve equations is very numerically 
inefficient (approximately N! numerical operations) and should never be used to 
solve practical problems in all fields of engineering. 

The author’s “hobby” has been the writing of numerically efficient computer 
programs for the solution of equations. This “pastime” has resulted in the 
publication of several papers on this topic[1, 2, 3, 4]. Most of this development is 
summarized in this appendix; therefore, it is not necessary to read the references 
to fully understand the numerical algorithms presented in this section. 

C.2 NUMERICAL EXAMPLE 

To illustrate the detailed numerical operations required to solve a set of linear 
equations by the Gauss elimination method, consider the solution of the 
following three equations: 

0.20.30.40.5 321 =++ xxx  (C.1) 

0.10.40.70.4 321 −=++ xxx  (C.2) 

0.30.40.40.3 321 =++ xxx  (C.3) 

First, solve Equation (C.1) for 1x : 

321 60.080.040.0 xxx −−=  (C.4) 

Second, substitute Equation (C.4) into Equations (C.2) and (C.3) to eliminate 1x  
and the following two equations are obtained: 

60.260.180.3 32 −=+ xx  (C.5) 
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80.120.260.1 32 =+ xx  (C.6) 

Third, solve Equation (C.5) for 2x : 

32 42105.068421.0 xx −−=  (C.7) 

Fourth, substitute Equation (C.7) into Equation (C.6) to eliminate 2x , and the 
following equation is obtained: 

8865.13 =x  (C.8a) 

Back-substitute Equation (C.8a) into Equations (C.7) to obtain: 

4829.12 −=x  (C.8b) 

Back-substitute Equations (C.8a) and (C8.b) into (C.4) to obtain: 

4482801 .x =  (C.8c) 

Therefore, matrix notation is not necessary to solve a set of linear equations. 
However, the Gauss elimination algorithm can be summarized in a general 
subscript notation that can be programmed for the computer for an arbitrary 
number of equations. 

It is important to point out that the back-substitution Equations (C.4), (C.7) and 
(C.8) can be written as the following matrix equation: 
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 (C.9) 

It will be later shown that Equation (C.9) is identical to the equation used in the 
matrix factorization solution method. 

C.3 THE GAUSS ELIMINATION ALGORITHM 

To develop a computer program for the solution of equations, it is first necessary 
to uniquely define the numerical procedure, or algorithm, by a finite number of 
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clearly defined steps. For Gauss elimination, the initial set of N equations can be 
written as:  
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 (C.10) 

Starting with the first equation, 1=n , we can solve for nx by dividing all terms 
in equation n by nna . Or: 
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Substitution of Equation (C.11) into a typical remaining equation i  yields: 
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  or,   (C.12) 

{ XE "Algorithms for:Gauss Elimination" }This simple Gauss elimination 
algorithm is summarized in a FORTRAN subroutine shown in Table C.1. Note 
that within a computer subroutine, the modified terms ib and ija  can be stored in 

the same locations as the original terms ib and ija . Therefore, after Equations 

(C.11) and (C.12) have been applied N times, the unknown Nx is evaluated and 
stored in the same location as Nb . All other unknowns are evaluated using the 

back-substitution Equation (C.11). The FORTRAN subroutine allows for an 
arbitrary number of load vectors. Therefore, for large systems, additional load 
vectors do not increase the number of numerical operations significantly. 

An examination of the subroutine clearly indicates the approximate number of 
numerical operations for L load conditions is given by : 

LNNNop += 3

3
1  (C.13) 
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Table C.1 FORTRAN Subroutine to Solve Equations by Gauss Elimination 
      
      SUBROUTINE GAUSSEL(A,B,NEQ,LL) 
      IMPLICIT REAL*8 (A-H,O-Z) 
C---- POSITIVE DEFINITE EQUATION SOLVER --- 
      DIMENSION A(NEQ,NEQ),B(NEQ,LL) 
C---- FORWARD REDUCTION  ------------------ 
      DO 500 N=1,NEQ 
C---- CHECK FOR POSITIVE-DEFINITE MATRIX – 
      IF (A(N,N).LE.0.0D0) THEN 
      WRITE (*,*) ‘MATRIX NOT POSSITIVE DEFINITE’ 
      STOP 
      ENDIF    
C---- DIVIDE B(N,L) BY A(N,N) ------------------------- 
      DO 100 L=1,LL 
  100 B(N,L) = B(N,L)/A(N,N) 
C---- DIVIDE A(N,J) BY A(N,N) ------------------------- 
      IF (N.EQ.NEQ) GO TO 500 ! CHECK FOR LAST EQUATION 
      DO 200 J=N+1,NEQ 
  200 A(N,J) = A(N,J)/A(N,N)    
C---- MODIFY REMAINING EQUATIONS ----------------------  
      DO 500 I=N+1,NEQ 
      DO 300 J=N+1,NEQ 
  300 A(I,J) = A(I,J) - A(I,N)*A(N,J) 
      DO 400 L=1,LL 
  400 B(I,N) = B(I,L) - A(I,N)*B(N,L) 
C 
  500 CONTINUE                ! ELIMINATE NEXT UNKNOWN 
C---- BACK-SUBSTITUTIONS ------------------------------ 
  600 N = N – 1 
      IF (N.EQ.0) RETURN 
      DO 700 L=1,LL 
      DO 700 J=N+1,NEQ 
  700 B(N,L) = B(N,L) – A(N,J)*B(N,L) 
      GO TO 600    
      END 
 

Note that the FORTRAN program statements very closely resemble the equations 
given by the Gauss elimination algorithm. As one notes, the major restriction on 
this subroutine is that it cannot solve systems that have zero terms on the 
diagonal of the matrix. However, it can be proven that non-singular stiffness and 
flexibility matrices will not have zero terms on the diagonal if the displacement 

nu  and associated force nR  have the same sign convention. Therefore, the 
subroutine as presented can be used to solve many small structural systems. 
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C.4 SOLUTION OF A GENERAL SET OF LINEAR EQUATIONS 

{ XE "Algorithms for:Solution of General Set of Equations" }It is very easy to 
modify the subroutine presented in Table C.1 to solve any non-singular sets of 
linear equations that have zero terms on the diagonal of the A matrix during the 
elimination process. The same Gauss elimination algorithm is used to solve the 
general set of equations with a very minor modification. The FORTRAN 
subroutine for this general Gauss elimination algorithm is given in Table C.2. 

Before eliminating the next unknown, it is only necessary to search for the largest 
term that exists in the remaining equations. The largest term is then moved to the 

nna  position by the interchange of the order of the equations (row interchange) 
and the interchange of the order of the unknowns (column interchange). The 
column interchange must be recorded to recover the unknowns in their original 
order. 

If after r equations have been eliminated and all the remaining terms in the A 
matrix are zero (or near zero compared to their initial values), the matrix is 
singular and the equations cannot be solved. For this case, the matrix is said to 
have a rank of r. If the set of equations represents force-equilibrium, it simply 
means that the stiffness matrix has N – r unstable modes or zero energy modes. 
This is an excellent physical illustration of a rank deficient matrix. 

C.5 ALTERNATIVE TO PIVOTING 

{ XE "Pivoting" }An alternative method to pivoting can be used to solve a non-
positive definite set of equations. Any set of equations can be made symmetrical 
and positive-definite by the multiplication of both sides of the equation by the 
transpose of the nonsymmetrical matrix. Or, Equation (C.10) can be written as 

BA =x   (C.14) 

where, AAA T=  is symmetric; and, the effective load is BAB T= . The 
additional numerical effort involved in the matrix multiplication is recovered by 
the reduction in numerical effort required to solve a symmetrical set of equations. 
In addition, the interchange of rows and columns, or pivoting, is eliminated. 
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Table C.2 FORTRAN Subroutine for Solution of a General Set of Equations 
      SUBROUTINE SOLVE(A,B,IEQ,NEQ,NLV) 
C---- SOLUTION OF GENERAL SET OF LINEAR EQUATIONS 
C     WHERE 
C     A = NEQ x NEQ NON-SYMMETRIX, NON-POSITIVE 
C         DEFINITE MATRIX 
C     B = NEQ x NLV LOAD MATRIX TO BE REPLACED BY 
C         SOLUTION 
C     IEQ = TEMPORARY STORAGE ARRAY OF NEQ 
C           INTERGERS 
C------------------------------------------------- 
      REAL*8     A(NEQ,NEQ),B(NEQ,NLV),D,BIG 
      INTEGER*4  IEQ(NEQ),NEQ,NLV,II,JJ,I,J,L,N 
C---- SET INITIAL UNKNOWN NUMBERS ---------------- 
      DO 100 N=1,NEQ 
 100  IEQ(N) = N 
C---- ELIMINATE UNKNOWNS N=1,2....NEQ  ----------- 
      DO 1000 N=1,NEQ 
C---- (1) LOCATE LARGEST TERM REMAINING ---------- 
      IF (N.NE.NEQ) THEN 
      BIG = ABS(A(N,N)) 
      II = N 
      JJ = N 
      DO 200 I=N,NEQ 
      DO 200 J=N,NEQ 
       IF (ABS(A(I,J)).GT.BIG) THEN 
       BIG = ABS(A(I,J)) 
       II = I 
       JJ = J 
       ENDIF 
 200  CONTINUE 
C---- (2) CHECK FOR SINGULAR MATRIX -------------- 
      IF (BIG.EQ.0.0) THEN 
      WRITE (*,*) ' MATRIX IS SINGULAR ' 
      PAUSE 'CORRECT DATA AND RERUN' 
      STOP 
      ENDIF 
C---- (3) INTERCHANGE COLUMNS -------------------- 
      DO 300 I=1,NEQ 
      D = A(I,JJ) 
      A(I,JJ) = A(I,N) 
 300  A(I,N)  = D 
C---- (4) KEEP TRACK OF EQUATION NUMBERS --------- 
      J =  IEQ(N)     
      IEQ(N) = IEQ(JJ) 
      IEQ(JJ)= J   
C---- (5) INTERCHANGE ROW "N" AND ROW "II" ------- 
      DO 400 J=N,NEQ 
      D = A(N,J) 
      A(N,J) = A(II,J) 
 400  A(II,J)= D 
C---- (6)INTERCHANGE LOADS ----------------------- 
      DO 500 L=1,NLV 

      D = B(N,L) 
      B(N,L) = B(II,L) 
 500  B(II,L)= D 
      ENDIF 
C---- (6)INTERCHANGE LOADS ------------ 
      DO 500 L=1,NLV 
      D = B(N,L) 
      B(N,L) = B(II,L) 
 500  B(II,L)= D 
      ENDIF 
C---- (7) DIVIDE LOADS BY DIAGONAL TERM 
 550  DO 600 L=1,NLV 
 600  B(N,L) =B(N,L)/A(N,N) 
C---- (8) DIVIDE ROW BY DIAGONAL TERM - 
      IF (N.NE.NEQ) THEN  
      DO 700 J=N+1,NEQ 
 700  A(N,J) = A(N,J)/A(N,N) 
C---- (9) SUBSTITUTE IN REMAINING Eq.-- 
      DO 900 I=N+1,NEQ 
      DO 800 J=N+1,NEQ 
 800  A(I,J) = A(I,J) - A(I,N)*A(N,J) 
      DO 900 L=1,NLV 
 900  B(I,L) = B(I,L) - A(I,N)*B(N,L) 
      ENDIFC 
 1000 CONTINUE  
C---- BACK-SUBSTITUTION --------------- 
      IF (NEQ.EQ.1) GO TO 1700 
      DO 1300 N=NEQ-1,1,-1 
       DO 1200 L=1,NLV 
        IF (N.NE.NEQ) THEN 
        DO 1100 J=N+1,NEQ 
 1100   B(N,L) = B(N,L) - A(N,J)*B(J,L) 
        ENDIF 
 1200  CONTINUE 
 1300 CONTINUE 
C---- RETURN UNKNOWNS IN ORIGINAL ORDER 
      DO 1600 N=1,NEQ 
       DO 1500 I=N,NEQ     
        II = IEQ(I) 
         IF(II.EQ.N) THEN 
          DO 1400 L=1,NLV   
          D = B(N,L) 
          B(N,L) = B(I,L) 
 1400     B(I,L)= D 
          IEQ(I) = IEQ(N)    
        GO TO 1600 !CHECK NEXT UNKNOWN  
         ENDIF 
 1500  CONTINUE 
 1600 CONTINUE 
C---- RETURN TO CALLING PROGRAM ------- 
 1700 RETURN 
      END  

Mathematicians do not recommend this approach because it increases the 
"condition number" and the theoretical error. However, for small, well-
conditioned systems, it has been the author’s experience that this approach works 
very well. It also can be proven that this approach will minimize the sum of the 
square of the error terms. 
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C.6 MATRIX INVERSION 

{ XE "Algorithms for:Matrix Inversion" }{ XE "Matrix Inversion" }The inverse 
of a matrix can be obtained by setting the matrix B to a unit matrix, I, and then 
solving the following equation for the N by N x matrix (the inverse of A): 

IAABxA -1 == or     (C.15) 

The major problem with this approach is that it requires more numerical 
operations and computer storage than the direct application of the modified 
Gauss algorithm. It is only necessary to write an algorithm to interchange 

nn bx  with  and then apply it with Nn .....1= . A typical equation is: 
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By dividing the n th equation by nna , it can be written as: 
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Now, nx can be eliminated from all equations before and after equation n. It is 
then moved to the right-hand side of the equation, and nb is moved to the left-

hand side of the equation. Or: 
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 (C.18) 

Hence, the new set of Equations can be written, after n transformations, in matrix 
form as: 

(n)(n)(n) bxA =  (C.19) 

After N transformations: 

xbbxAA 1 −=−== − )()(    and    , NN(N)  (C.20) 

Using this modified Gauss inversion algorithm, it can easily be shown that a 
closed form solution for a 2 by 2 system is 
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A FORTRAN subroutine that summarizes the matrix inversion algorithm is given 
in Table C.3. Note that the inverse can be stored in the same locations as the 
original matrix and no new computer storage is required.  

Table C.3 Subroutine to Invert a Matrix by Modified Gauss Elimination 
 
      SUBROUTINE INVERT(A,NMAX) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(NMAX,NMAX) 
C---- MATRIX INVERSION BY MODIFIED GAUSS ELIMINATION 
      DO 200 N=1,NMAX 
      D = A(N,N)      ! SAVE DIAGONAL TERM 
C---- DIVIDE ROW BY DIAGONAL TERM ------------------       
      DO 100 J=1,NMAX 
  100 A(N,J) = -A(N,J)/D 
C---- MODIFY OTHER EQUATIONS ----------------------- 
      DO 150 I=1,NMAX 
      IF(N.EQ.I) GO TO 150 
       DO 140 J=1,NMAX 
       IF(N.EQ.J) GO TO 140 
       A(I,J) = A(I,J) + A(I,N)*A(N,J) 
  140  CONTINUE 
C---- MODIFY COLUMN -------------------------------- 
  150 A(I,N) = A(I,N)/D 
C---- INVERT DIAGONAL TERM ------------------------- 
      A(N,N) = 1.0/D 
  200 CONTINUE       ! REDUCE NEXT EQUATION 
      RETURN         ! INVERSION COMPLETE   
      END 

It should be emphasized that matrix inversion is almost never required in 
structural analysis. The only exception is the inversion of the 6 by 6 strain-stress 
matrix. Many textbooks imply that if a large number of load vectors exists, the 
additional numerical effort associated with matrix inversion is justifiablenot 
true. 

An examination of the matrix inversion subroutine indicates that the approximate 
number of numerical operations, as previously defined, to invert an N by N 
matrix is approximately 3N . If there are L load vectors, the total number of 
numerical operations to invert the matrix and multiply by the load matrix will be: 
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LNNon 23.. +=  (C.22) 

If the set of equations is solved directly by Gauss elimination, the total number of 
numerical operations is:  

LNNon 23

3
1.. +=  (C.23) 

Therefore, matrix inversion is always inefficient compared to the direct solution 
of equations by Gauss elimination. In addition, if a sparse or banded matrix is 
inverted, a full matrix may be produced that would require a significant increase 
in computer storage and execution time. 

C.7 PHYSICAL INTERPRETATION OF MATRIX INVERSION 

To illustrate the physical interpretation of the matrix inversion algorithm, 
consider the force-deformation relationship for the simple beam shown in Figure 
C.1.  
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Figure C.1 Force-Deformation Behavior of Simple Supported Beam 

The force-deformation equations written in matrix form are: 
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Note the first column of the stiffness matrix represents the moments developed at 
the ends as a result of a unit rotation at i. The second column of the stiffness 
matrix represents the moments developed at the ends as a result of a unit rotation 
at j. By applying the inversion algorithm for n=1, the following equation is 
obtained: 
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Each term in the modified matrix has a physical meaning. The first column, with 
0=φ j , a unit moment applied at i produces a rotation of EIL 4/ at i and a 

moment of 2/1 at j. The second column, with 0=jM , a unit rotation applied at 
j produces a rotation of 2/1− at i and a moment of LEI /3 at j.  

After application of the inversion algorithm for n=2, the following flexibility 
equation is obtained: 
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Therefore, the abstract mathematical procedure of matrix inversions has a very 
physical interpretation. Each term in the matrix, after an interchange of nx  and 

nb , represents a displacement or force per unit of displacement or forces. It also 
indicates, using the displacement method of structural analysis for the solution of 
joint equilibrium equations, that the diagonal term has the units of stiffness and 
cannot be negative or zero for a stable structural system; therefore, there is no 
need to pivot during the solution algorithm. 
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C.8 PARTIAL GAUSS ELIMINATION, STATIC CONDENSATION AND 
SUBSTRUCTURE ANALYSIS 

{ XE "Algorithms for:Partial Gauss Elimination" }{ XE "Algorithms for:Static 
Condensation" }{ XE "Partial Gauss Elimination" }{ XE "Static Condensation" }{ 
XE "Substructure Analysis" }In the displacement method of structural analysis 
the stiffness matrix times the joint displacements are equal to the external joint 
loads. The application of the Gauss elimination algorithm to the solution of these 
equilibrium equations has a very important physical interpretation. The initial 
terms on the diagonal of the stiffness matrix are in the units of force per unit of 
deformation with all other degrees of freedom in the structure fixed. The 
elimination of an unknown displacement is equivalent to releasing the 
displacement, and the loads are carried over to the other degrees of freedom in 
the structure. The stiffness terms at the adjacent degrees of freedom are modified 
to reflect that movement is allowed at the degrees of freedom eliminated. 
Therefore, the solutions of the equilibrium equations by applying the Gauss 
elimination algorithm to all degrees of freedom can be interpreted, by a structural 
engineer over the age of fifty, as one giant cycle of moment distribution in which 
iteration is not required.  

What is of greater significance, however, is if the algorithm is stopped at any 
point, the remaining equations represent the stiffness matrix with respect to the 
degrees of freedom not eliminated. This substructure stiffness can be extracted 
and used as a super element in another structural model. Also, the loads 
associated with the eliminated displacements are carried over to the substructure 
joints and must be applied to the new structural model. After the displacements 
associated with the substructure joints have been found, the eliminated 
displacements can be calculated by back-substitution. 

This partial Gauss elimination algorithm is also called the static condensation 
method. The algorithm and a FORTRAN subroutine are summarized in Table 
C.4. Note that the stiffness matrix is still stored in square form; however, the 
number of numerical operations is reduced by recognition of the symmetry of the 
stiffness matrix, and some of the operations on zero terms are skipped.  

Table C.4 Partial Gauss Elimination Algorithm and Subroutine 
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      SUBROUTINE SUBSOL(K,R,NEQ,LEQ,LL,MOP) 
      REAL*8 K(NEQ,NEQ),R(NEQ,LL),T,ZERO 
C---- SUBSTRUCTURE EQUATION SOLVER - WHERE ------------------- 
C     K   = STIFFNESS MATRIX TO BE REDUCED 
C     R   = LOAD VECTORS - REPLACED BY DISPLACEMENTS 
C     NEQ = TOTAL NUMBER OF EQUATIONS 
C     LEQ = NUMBER OF MASSLESS D.O.F. TO BE ELIMINATED 
C     LL  = NUMBER OF LOAD VECTORS  
C     MOP = 0 TRIANGULARIZATION AND COMPLETE SOLUTION 
C     MOP = 1 TRIANGULARIZATION ONLY 
C     MOP = 2 LOAD REDUCTION ONLY 
C     MOP = 3 DISPLACEMENT RECOVERY ONLY  
      DATA ZERO /0.0D0/ 
C------------------------------------------------------------- 
      IF(MOP.EQ.3) GO TO 800   ! DISPLACEMENT RECOVERY ONLY 
      IF(MOP.EQ.2) GO TO 500   ! LOAD REDUCTION ONLY 
C---- TRIANGULARIZATION -------------------------------------- 
      DO 400 N=1,LEQ 
      IF(K(N,N).LE.ZERO) STOP ' STRUCTURE UNSTABLE ' 
      IF (N.EQ.NEQ) GO TO 400  ! CHECK FOR LAST EQUATION 
      DO 300 J=N+1,NEQ 
       IF(K(N,J).NE.ZERO) THEN ! OPERATE ONLY ON NONZERO TERMS 
        T = K(N,J)/K(N,N) 
        DO 200 I=J,NEQ         ! MODIFY OTHER EQUATIONS  
  200   K(J,I) = K(J,I) - K(N,I)*T 
        K(N,J) = T 
       ENDIF 
  300 CONTINUE                 ! END OF J LOOP 
  400 CONTINUE                 ! END OF N LOOP 
      IF(MOP.EQ.1) RETURN      ! TRIAGULARIZE  ONLY 
C---- FORWARD REDUCTION OF LOAD VECTORS ---------------------- 
  500 DO 700 N=1,LEQ 
       DO 650 L=1,LL           ! REDUCE ALL LOAD VECTORS 
       IF (N.EQ.NEQ) GO TO 650 
       DO 600 J=N+1,NEQ 
  600  R(J,L) = R(J,L) - K(N,J)*R(N,L) 
  650  R(N,L) = R(N,L)/K(N,N) 
  700 CONTINUE                 ! END OF N LOOP 
      IF(MOP.EQ.2) RETURN      ! RETURN TO CALLING PROGRAM 
C---- RECOVERY OF DISPLACEMENTS ------------------------------ 
  800 DO 1000 NN=1,LEQ,1 
      N = LEQ - NN + 1 
      IF (N.EQ.NEQ) GO TO 1000 ! LAST EQUATION HAS BEEN SOLVED 
       DO 900 L=1,LL           ! RECOVER ALL LOAD CONDITIONS 
       DO 900 J=N+1,NEQ 
  900  R(N,L) = R(N,L) - K(N,J)*R(J,L) 
 1000 CONTINUE                 ! END OF N LOOP 
      RETURN                   ! RETURN  TO CALLING PROGRAM 
C------------------------------------------------------------- 
      END     

This subroutine can be used to solve a full set of equations. For this case, it is 
apparent that the number of numerical operations required for a solution of a 
complete set of equations is: 
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LNNon 23

6
1.. +=  (C.27) 

C.9 EQUATIONS STORED IN BANDED OR PROFILE FORM 

{ XE "Banded Equations" }{ XE "Profile Storage of Stiffness Matrix" }A careful 
examination of the Gauss elimination algorithm as applied to the global stiffness 
matrix indicates that new terms in the stiffness matrix are only generated below 
the first non-zero term in each column. Also, only the terms above the diagonal 
need to be stored during the solution procedure. Therefore, the symmetric 
stiffness matrix can be stored in banded or profile form, as indicated in Figure 
C.2. 

Figure C.2 Methods of Storage for Symmetric Stiffness Matrices 

The banded form of storage for the stiffness matrix was used in the early years of 
the development of structural analysis programs. For example, SAP-IV used a 
blocked-banded approach. However, the banded storage method initially required 
that the user number the nodes in an order that would minimize the bandwidth. 
Later, bandwidth minimization algorithms were developed; however, a large 
number of zero terms still existed within the band for most structural systems. 
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The profile method of storage reduces the computer storage requirements and 
reduces the operation on zero terms. For this method, the stiffness matrix is 
stored in one dimensional form, from the first non-zero term in a column to the 
diagonal term, as shown in Figure C.2.B. In addition, a one-dimensional integer 
array, LD, indicates the location of the diagonal term for each column. The 
profile storage method is used in most modern structural analysis programs. 
Many different algorithms have been developed to reduce the number of 
numerical operations and computer storage requirements for stiffness matrices. 
Within the SAP90 and SAP2000 programs, three different algorithms are tried, 
and the one that requires the minimum computer storage is used.  

From the fundamental Gauss elimination equations, it is apparent that the banded 
storage method requires the following number of numerical operations: 

 LbNbbNNop +−= 22

3
1

2
1  (C.28) 

Note that for a small half-bandwidth b, the number of numerical operations to 
solve a set of equations can be very small, compared to the formation of element 
matrices and the calculation of member forces and stresses. 

In the case of profile storage, the number of numerical operations to solve the set 
of equations can be estimated from: 

LhhNop n

N

n
n 2

2
1

1

2 +=∑
=

 (C.29) 

The column height is given by )1()( −−= nLDnLDhn . Note that both Equations 
(C.28) and (C.29) reduce to Equation (C.27) for a full stiffness matrix. 

C.10 LDL FACTORIZATION 

{ XE "Algorithms for:LDL Factorization" }{ XE "LDL Factorization" }In books 
on numerical analysis, the most common approach proposed to solve a set of 
symmetric equations is the TLDL factorization, or decomposition, method. This 
approach involves the identical number of numerical operations, computer 
storage and accuracy as the Gauss elimination method; however, it lacks the 
physical analogy that exists with the partial Gauss elimination method. On the 
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other hand, the factorization approach has advantages in that the operations on 
the stiffness and load matrices are separated. Also, error estimations can be 
obtained from the method, and it can be directly extended to the solution of 
eigenvector or Ritz vector analysis. In any case, we can use the advantages of 
both approaches without being forced to use one or the other.  

The set of linear equations to be solved is written in the following matrix form: 

yxLbLDybxLDL b= Ax TT ===     where,     or,      or,    (C.30) 

where A is an N by N symmetric matrix that contains a large number of zero 
terms. The N by M   x displacement and b load matrices indicate that more than 
one load condition can be solved at the same time. The solution of equations is 
divided into the following three steps: 

C10.1 Triangularization or Factorization of the A Matrix 

The first step in the solution of the set of linear equations is to factor the A  
matrix into the product of a lower triangular matrix L, with all diagonal terms 
equal to 1.0, times an upper triangular matrix U. Or, in the case of a symmetric 
matrix: 

TLDLLUA ==  (C.31) 

From the basic definition of matrix multiplication, the following equation can be 
written: 

UL = UL = A kjik

i

1=k
kjik

N

1=k
ij ∑∑  (C.32) 

From Equation (C.32) a careful examination of the limits of the summation 
indicates that the n th column of the U matrix and the n th row of the L matrix 
can be calculated, in the order shown in Figure C.3, from the following 
equations: 

UL - A = U knik

1-i

1=k
inin ∑  (C.33) 

D
U = L

jj

nj
nj  (C.34) 
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From Equation (C.34) the diagonal term is: 

∑
−

=

==
1

1

n

k
knnknnnnnnnnnn ULAA - AU = D    where    (C.35) 
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Figure C.3 Order of Calculation of the Rows and Columns in Factored Matrix 

If these equations are evaluated in the appropriate order, it is possible to store the 
LT matrix in the same locations as the original A matrix. Because the nnL  are 
always equal to one, the diagonal terms nnD  can be stored on the diagonal of the 
original matrix. Hence, it is possible to factor the matrix without additional 
storage requirements. Note that the lower limit of the “k” summation can be 
changed to the location of the first non-zero term in the column or row. 

C10.2 Forward Reduction of the b Matrix 

The next step in the solution of linear equations is to conduct a forward reduction 
of the load vector by solving the following set of equations where xL =y T : 

 b=y DL  (C.36) 

The solution is given by: 

N1  . . . .  = n    yL - 
D
b = y kmnk

1-n

1=knn

nm
nm ∑  (C.37) 
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C10.3 Calculation of x by Backsubstitution 

It is apparent that the unknowns x can now be calculated from: 

1 . . . .  N= n       yL - y = x kmkn

1-n

1=k
nmnm ∑  (C.38) 

The forward reduction and back substitution is conducted for all load vectors 
from m = 1 to the total number of load vectors. The fact that the factorization 
phase is completely separate from the solution phase allows the factorized matrix 
to be used for both the static and dynamic phase of the solution. FORTRAN 
subroutines, using profile storage, are given in reference [3]. 

The determinant of TLDL is the product of the determinant of each matrix. 
Hence, the product of the diagonal terms of the D matrix is the determinant of the 
matrix. The determinant of a matrix is of little physical value. However, the 
mathematical properties of the sequence of diagonal terms nnD  are very 
significant. 

The three equation given by Equations (C.1), (C.2) and (C.3) can be factored as: 
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08.30
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0.00.00.1

DLLT  (C.39) 

Note that the L matrix is identical to the Gauss elimination back-substitution 
matrix shown in Equation (C.9). Also, 






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
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


−=
















−=

8865.1
4829.1

44828.0
   and     

8865.1
68421.0

40000.0
xy  (C.40a and C.40b) 

Therefore, there is very little difference between the factorization approach and 
the Gauss elimination method. 
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C.11 DIAGONAL CANCELLATION AND NUMERICAL ACCURACY 

{ XE "Diagonal Cancellation" }{ XE "Numerical Accuracy" }The numerical 
accuracy of the solution of a set of linear equations can be estimated by the 
examination of the expression for the diagonal terms, Equation (C.35). Or, in 
simplified form: 

   nnnnnn A - A = D  (C.41) 

Where nnA  is the original unmodified term in the matrix and nnA  is the 
modification to the term to produce the new diagonal term nnD . We know that if 

nnD  is zero, or very near zero, the matrix is singular and the solution algorithm 
must be terminated. Within modern computer systems, numbers have a range of 
approximately 300300 10 to10− ; therefore, an exact zero number is almost 
impossible to detect because of round off errors. What is really important, 
however, is the size of the original diagonal term compared to the reduced 
diagonal term. Therefore, the number of significant decimal figures lost can be 
estimated from: 

)(log)(log.. 1010 AAlf nn −=  (C.42) 

Because all normal engineering calculations are completed within the computer 
using approximately 15 significant figures, a loss of over 12 figures indicates that 
significant errors may exist; hence, the structural engineer should be warned, and 
the computer model of the structure examined. This problem exists if the model 
lacks appropriate boundary conditions, a collapse mechanism exists or if 
members with large relative stiffness are used.  

C.12 SUMMARY 

The most general approach for the solution, inversion and condensation of 
equilibrium equations is Gauss elimination. In programming this method for use 
in structural analysis programs, sparse storage and profile minimization [4] is 
required to minimize the numerical effort. Diagonal cancellation must be checked 
to detect numerical problems. 
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For the solution of structural equilibrium equations, pivoting should not be used. 
Before eliminating a degree of freedom, the diagonal term always represents the 
stiffness associated with the degree of freedom. Hence, a zero or near zero 
diagonal term indicates that the computational model of the structure is unstable. 

Given the speed of a computer system, number of operations per second, it is 
possible to accurately predict the computer time to solve a set of equations. 
Whereas the computer time required by an iterative solver, which can be faster 
for certain large systems, cannot be accurately predicted. In addition, the 
triangularized stiffness matrix can be used directly to generate mode shapes 
required for a dynamic analysis. 
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