
 

 

APPENDIX A 

VECTOR NOTATION 
Vector Notation is Based on  

The Physical Laws of Statics 

A.1  INTRODUCTION 

{ XE "Vector Notation" }To define member properties, skew boundary 
conditions and other information required to specify the input data for three-
dimensional structures, the computer program user must have a working 
knowledge of vector notation. Because forces and moments are vectors in three-
dimensional space, this appendix reviews, from a physical standpoint, vector 
notation and vector operations that are required to use a structural analysis 
program intelligently. Any force acting in three-dimensional space has a 
magnitude and direction or line of action, as shown in Figure A.1. 

Figure A.1 Typical Force Vector 
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The point of application of the force on the structure is on this line of action. 
Also, a force can be expressed in terms of its components in the global x, y and z 
axes. In vector notation, the force is written in terms of its components as:  

z F + y F + yy ˆˆx̂ F =F x  (A.1) 

where   and , zyx ˆˆˆ are by definition the unit vectors along the x, y, and z axes 

respectively. Note that a vector equation always has three components. 

It is apparent that the absolute value of the magnitude of the force vector is given 
by: 

F + F + F  = |F| z
2
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x
2  (A.2) 

We can now define the following dimensionless ratios: 

|F|
F = V x

xf ,   
|F|

F = V
y

yf ,  and  
|F|

F = V z
zf  (A.3) 

In vector notation, these ratios are termed the direction cosines of the vector. 
Hence, the unit vector in the direction of the vector is: 

zVyVx Vf zfyfxf ˆˆˆˆ ++=  (A.4) 

Therefore, the direction cosines are not independent because: 

zVyVx V zfyfxf
ˆˆˆ1 ++=  (A.5) 

A.2  VECTOR CROSS PRODUCT 

{ XE "Vector Cross Product" }The vector cross product can be defined using 
traditional, abstract mathematical notation. Or, the physical laws of statics can be 
applied to develop and explain the use of the cross product operation in defining 
the geometry of three-dimensional structural systems. The definition of a positive 
moment vector is defined by the right-hand rule, illustrated in Figure A.2. 
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Figure A.2 Definition of Positive Moment (rotation)  
using the Right Hand Rule  

Figure A.3 shows two vectors, a distance vector d and a force vector F. Point 2 is 
on the line of action of the force vector F.  
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Figure A.3 Cross Product of Two Vectors 

To calculate the moment acting at point 1, one can use the three components of 
the force vectors and the three components of the distance vector to calculate the 
three components of the resulting moment. Or: 

xyyxzzxxzyyzzyx FdFdMFdFdMFdFdM −=−=−=     and        ,  (A.6) 

The resulting moment at point 1 is written in vector notation as: 

zMMxMM zyx ˆˆˆ    y  ++=  (A.7) 
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Therefore, this physical procedure defined as the cross, or vector, product of two 
vectors is defined as: 

FdM x=  (A.8) 

Because all of these calculations are performed within computer programs, it is 
not necessary to remember this cross product equation. The important physical 
fact to remember is that the resultant rotational vector is normal to the plane 
defined by points 1, 2 and 3. 

A.3  VECTORS TO DEFINE A LOCAL REFERENCE SYSTEM 

{ XE "Vectors Used to Define Local Reference System" }A local 1, 2, 3 
reference system can be defined by the specification of three points in space, as 
shown in Figure A.4. 
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Figure A.4 Definition of Local Reference System from Points I, J and K 

Unit vectors 4  and  ˆ1̂  can be defined from the vectors I to J and I to K 
respectively. Now, if we form the cross product vectors 4  with ˆ1̂ , we can define 
a vector 3̂  normal to the plane I-J-K. The unit vector 2̂  is now defined by the 
cross product of the vectors 1  with  ˆ3̂ . The resulting local 1,2,3 right-hand 
reference system is related to the global x,y,z system by the following matrix 
equations of direction cosines: 
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 (A.9) 

The 3 by 3 V matrix can now be used to transform displacements, rotations, 
forces and moments from one reference system to another reference system. For 
example, the displacement transformation equations are: 
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This allows element stiffness and load matrices to be formed in a local element 
reference system and then transformed to a global reference system to form the 
global equilibrium equations. 

A.4  FORTRAN SUBROUTINES FOR VECTOR OPERATIONS 

Within a structural analysis program, only two vector operations are required. To 
define a vector, the coordinates of the starting point “I” and ending point “J” 
must be given. The FORTRAN subroutine given in Table A.1 illustrates how the 
three direction cosines are calculated and how the length of the vector is 
calculated. The results are stored in the “V” array.  
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Table A.1 FORTRAN Subroutine to Define Vector 
 
      SUBROUTINE VECTOR (V,XI,YI,ZI,XJ,YJ,ZJ) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION V(4) 
C---- GIVEN TWO POINTS DEFINE VECTOR IN I-J DIRECTION - 
      X = XJ - XI                      ! X PROJECTION 
      Y = YJ - YI                      ! Y PROJECTION 
      Z = ZJ - ZI                      ! Z PROJECTION 
      V(4) = DSQRT( X*X + Y*Y + Z*Z )  ! VECTOR LENGTH 
C---- ERROR CHECK ------------------------------------- 
      IF (V(4).LE.0.0D0) THEN 
      WRITE (*,*) '*ERROR* ZERO LENGTH MEMBER OR VECTOR'  
      PAUSE       'CORRECT ERROR AND RERUN PROGRAM' 
      STOP ' ' 
      ENDIF 
C---- COMPUTER DIRECTION COSINES ---------------------- 
      V(3) = Z/V(4) 
      V(2) = Y/V(4) 
      V(1) = X/V(4) 
C 
      RETURN 
      END 

The subroutine given in Table A.2 produces the cross product vector “C,” given 
vectors “A” and “B.” 

Table A.2 FORTRAN Subroutine to Perform Vector Cross Product 
 
      SUBROUTINE CROSS(A,B,C) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(4),B(4),C(4) 
C---- CROSS PRODUCT OF VECTORS "A" x "B" = VECTOR "C"-  
      X = A(2)*B(3) - A(3)*B(2)      ! X COMPONENT 
      Y = A(3)*B(1) - A(1)*B(3)      ! Y COMPONENT 
      Z = A(1)*B(2) - A(2)*B(1)      ! Z COMPONENT 
      C(4) = DSQRT( X*X + Y*Y + Z*Z) ! VECTOR LENGTH 
C---- CHECK FOR ERROR -------------------------------- 
      IF(C(4).LE.0.0D0) THEN 
      WRITE (*,*) '*ERROR* VECTORS ARE IN SAME DIRECTION' 
      PAUSE 'CORRECT ERROR AND RERUN PROGRAM' 
      STOP ' ' 
      ENDIF 
C---- COMPUTE DIRECTION COSINES ---------------------- 
      C(3) = Z/C(4) 
      C(2) = Y/C(4) 
      C(1) = X/C(4) 
C 
      RETURN 
      END 


